
UNLOCKING THE SECRETS OF THE JMF

Volume:5 Issue:4, April 2000

The World’s Leading Java Resource

RETAILERS PLEASE DISPLAY
UNTIL JUNE 31, 2000

$4.99US $6.99CAN Exception
Chaining
Simplifies
Debugging

Python
Programing
in the JVM

Java
Servlets:
Design
Practices

Unlocking
the
Secrets of
the JMF

www.javadevelopersjournal.com

TM

Java COM

2 APRIL 2000

Microsoft
www.microsoft.com

3APRIL 2000

Java COM

Protoview
www.protoview.com

Java COM

4 APRIL 2000

Middleware
www.middleware.com

SUBSCRIPTION HOTLINE

1 800-513-7111
International Subscriptions

& Customer Service Inquiries
914 735-1900

or by fax: 914 735-3922
E-mail: Subscribe@SYS-CON.com

http://www.SYS-CON.com
Mail All Subscription Orders or
Customer Service Inquiries to:

CUSTOMER SERVICE
Phone: 914 735-1900 • Fax: 914 735-3922

ADVERTISING & SALES
Phone: 914 735-0300 • Fax: 914 735-7302

EDITORIAL DEPT.
Phone: 914 735-7300 • Fax: 914 735-6547

PRODUCTION/ART DEPT.
Phone: 914 735-7300 • Fax: 914 735-6547

WORLDWIDE DISTRIBUTION by
Curtis Circulation Company

739 River Road, New Milford, NJ 07646-3048
Phone: 201 634-7400

DISTRIBUTED in the USA by
International Periodical Distributors

674 Via De La Valle, Suite 204
Solana Beach, CA 92075

Phone: 619 481-5928

www.PowerBuilderJournal.com

www.ColdFusionJournal.com

http://www.JBuilderJournal.com

www.TangoJournal.com

www.TangoJournal.com

www.JavaDevelopersJournal.com

CONTACT ESSENTIALS

5APRIL 2000

Java COM

F R O M T H E E D I T O R
THEY MIGHT BE GIANTS 8

by sean rhody

S T R A I G H T T A L K I N G
THE WHOLE WORLD IS
TURNING AMAZON! 20

by alan williamson

P R O D U C T R E V I E W
LINGOGUI 1.1 64

by jim milbery

E - J A V A
ANATOMY OF A JAVA

APPLICATION SERVER 78
by ajit sagar

D I S T R I B U T E D
S O L U T I O N S

DISTRIBUTED TASKING
IN JAVA 86

by sam mckenna

J D J N E W S
96

R E A D E R F E E D B A C K
98

B O O K E X C E P R T
SERVLETS & JDBC 102

by alan williamson

I M H O
JAVA TECHNOLOGY
COMES OF AGE 118

by ed lycklama

F E A T U R E mark spencer

Guide to Using Spreadsheets on the Web
How to enhance e-business and B2B processes 8
sameer tyagi C O V E R S T O R Y

Understanding EJB Transactions
20 Transacitonal scope is an important part of understanding

E J B H O M E jason westra

What do MTS and EJB Have in Common?
A stateless component model, which can meet the demand 26

derek c. ashmore F E A T U R E

Best Practices for JDBC Programming
42 How to further the goals of best practices

F E A T U R E

Basic Object-Oriented Concepts in HTML
68 A purpose-built tool for teaching computer science newbies

F E A T U R E linden decarmo

Multimedia Evolution or Revolution? PART 3
A revealing look at the Java Media Framework 2.0 90

C O R B A C O R N E R todd scallan

Improving Reliability and Scalability
Ease the pain of migrating to a new middleware 56

daniela micucci
& andrea trentini

V O L U M E : 5 I S S U E : 4 , A P R I L 2 0 0 0

Java COM

6 APRIL 2000

TogetherSoft
www.togethersoft.com

7APRIL 2000

Java COM

SEAN RHODY, EDITOR-IN-CHIEF

O
ne of the frustrations of editing a monthly magazine, as opposed to a daily newspaper, is
that I seldom get to scoop the rest of the press. With our lead times, breaking news is more
or less old by the time you hear it from me. So by now you’ve heard that Corel has merged
with Inprise, maker of my favorite IDE, JBuilder.

Corel has been quietly positioning itself as the new challenger to Microsoft’s monopoly on
the PC desktop. Capitalizing on the open-source revolution that is Linux, Corel has brought
forth several different offerings to compete with Microsoft.

There are a good number of Linux vendors, but Corel has a fairly unique position among
them. If you looked at it strictly from an operating system standpoint, you might pass on Corel
in favor of Red Hat, which is the mindshare leader in the Linux world.

But operating systems are only a part of what makes Microsoft great – or greatly feared,
depending on your viewpoint. Strong, integrated software and development tools, such as
Office, C++, Visual Basic and SQL Server, round out the story for Microsoft. The ability to one-
stop shop is a strong selling point for many IT shops, more because of the reduced finger
pointing than overall suitability to task.

Seen from that viewpoint, Corel is building a case to be your one-stop vendor. For pro-
ductivity purposes they offer WordPerfect Office. Die-hard devotees of WordPerfect can get an
operating system with more power and stability than Windows 98, and support from a single
source.

The addition of Inprise to the team brings a whole new level to the development aspect of
Corel. While public domain tools have long been available on Linux, the addition of JBuilder,
C++ Builder and Delphi to the Linux platform will bring the commercial-grade development
tools needed to do serious development. Inprise also brings a CORBA ORB, an EJB server and
a moderately powerful SQL database server.

Obviously, Corel faces significant technical challenges. Porting JBuilder shouldn’t be too
difficult, seeing that it already runs on Solaris and is about 80% pure Java. Moving C++ Builder
and Delphi may be more difficult, as their IDEs are Windows based. But Corel seems up for the
task.

To round out the company and make it truly a competitor of Microsoft, some additional
acquisitions are definitely needed. A strong SQL database is necessary to compete with SQL
Server. Who better to acquire for the task than the originator of that product – Sybase? Over
the past two years I’ve watched the company as its stock has slowly rebounded from the base-
ment to a more respectable position in the mid-20s (I should have bought at 4). Their new
CEO has stemmed the worst of the bleeding and the company is making significant inroads
with its mobile database. A Corel purchase or merger, followed by a spin-off of the Powersoft
group, would give Corel the database muscle and hard-core UNIX expertise to continue to
innovate and integrate their product line.

A strong EJB server would also help make them a key market player. Persistence and BEA
may be out of reach, but companies like Secant or possibly Iona might round out the product
line nicely. Can you imagine getting any ORB you like, as long as it’s from Corel?

Making this all work will be an interesting task for Corel. I like Linux, and run it on one of
my machines at home. It’s powerful, gets better mileage from the CPU and has finally gotten
a modern interface to rival Windows (I use KDE, but I also like Gnome). But Linux is still hard
to install. It doesn’t recognize a lot of hardware, and it’s hard to reconfigure if you add some-
thing (just try changing a network card). Ease of installation and use, coupled with strong
technical support, is what will make or break Corel’s dream of being a giant. In the meantime,
I’ll be waiting for my copy of JBuilder for Linux.

F R O M T H E E D I T O R

E D I T O R I A L A D V I S O R Y B O A R D
TED COOMBS, BILL DUNLAP, DAVID GEE, MICHEL GERIN,

ARTHUR VAN HOFF, JOHN OLSON, GEORGE PAOLINI,
KIM POLESE, SEAN RHODY, RICK ROSS,

AJIT SAGAR, RICHARD SOLEY, ALAN WILLIAMSON

EDITOR-IN-CHIEF: SEAN RHODY
EXECUTIVE EDITOR: M’LOU PINKHAM

ART DIRECTOR: ALEX BOTERO
PRODUCTION EDITOR: CHERYL VAN SISE

SENIOR EDITOR: JEREMY GEELAN
ASSOCIATE EDITOR: NANCY VALENTINE

EDITORIAL CONSULTANT: SCOTT DAVISON
TECHNICAL EDITOR: BAHADIR KARUV

PRODUCT REVIEW EDITOR: ED ZEBROWSKI
INDUSTRY NEWS EDITOR: ALAN WILLIAMSON

E-COMMERCE EDITOR: AJIT SAGAR

W R I T E R S I N T H I S I S S U E
DEREK C. ASHMORE, LINDEN DECARMO, ED LYCKLAMA,

SAM MCKENNA, DANIELA MICUCCI, JIM MILBERY, SEAN RHODY,
AJIT SAGAR, TODD SCALLAN, MARK SPENCER, ANDREA TRENTINI,

SAMEER TYAGI, JASON WESTRA, ALAN WILLIAMSON

S U B S C R I P T I O N S
FOR SUBSCRIPTIONS AND REQUESTS FOR BULK ORDERS,

PLEASE SEND YOUR LETTERS TO SUBSCRIPTION DEPARTMENT

SUBSCRIPTION HOTLINE: 800 513-7111
COVER PRICE: $4.99/ISSUE

DOMESTIC: $49/YR. (12 ISSUES) CANADA/MEXICO: $69/YR.
OVERSEAS: BASIC SUBSCRIPTION PRICE PLUS AIRMAIL POSTAGE

(U.S. BANKS OR MONEY ORDERS). BACK ISSUES: $12 EACH

PUBLISHER, PRESIDENT AND CEO: FUAT A. KIRCAALI
VICE PRESIDENT, PRODUCTION: JIM MORGAN

VICE PRESIDENT, MARKETING: CARMEN GONZALEZ
ACCOUNTING MANAGER: ELI HOROWITZ
CIRCULATION MANAGER: MARY ANN MCBRIDE

ADVERTISING ACCOUNT MANAGERS: ROBYN FORMA
MEGAN RING

JDJSTORE.COM: JACLYN REDMOND
ADVERTISING ASSISTANT: CHRISTINE RUSSELL

GRAPHIC DESIGNERS:: JASON KREMKAU
ABRAHAM ADDO

GRAPHIC DESIGN INTERN: AARATHI VENKATARAMAN
WEBMASTER: ROBERT DIAMOND

WEB SERVICES CONSULTANT: BRUNO Y. DECAUDIN
WEB SERVICES INTERN: DIGANT B. DAVE

CUSTOMER SERVICE MANAGER: CAROL KILDUFF
CUSTOMER SERVICE: ANN MARIE MILILLO

ONLINE CUSTOMER SERVICE: AMANDA MOSKOWITZ

E D I T O R I A L O F F I C E S
SYS-CON PUBLICATIONS, INC.

39 E. CENTRAL AVE., PEARL RIVER, NY 10965
TELEPHONE: 914 735-7300 FAX: 914 735-6547

SUBSCRIBE@SYS-CON.COM
JAVA DEVELOPER’S JOURNAL (ISSN#1087-6944)

is published monthly (12 times a year) for $49.00 by
SYS-CON Publications, Inc., 39 E. Central Ave., Pearl River, NY 10965-2306.

Periodicals Postage rates are paid at
Pearl River, NY 10965 and additional mailing offices.

POSTMASTER: Send address changes to:
JAVA DEVELOPER’S JOURNAL, SYS-CON Publications, Inc.,

39 E. Central Ave., Pearl River, NY 10965-2306.

© C O P Y R I G H T
Copyright © 2000 by SYS-CON Publications, Inc. All rights reserved.

No part of this publication may be reproduced or transmitted in any form or by any
means, electronic or mechanical, including photocopy or any information storage and
retrieval system, without written permission. For promotional reprints, contact reprint
coordinator. SYS-CON Publications, Inc., reserves the right to revise, republish and

authorize its readers to use the articles submitted for publication.

W O R L D W I D E D I S T R I B U T I O N B Y
CURTIS CIRCULATION COMPANY

739 RIVER ROAD, NEW MILFORD NJ 07646-3048 PHONE: 201 634-7400

Java and Java-based marks are trademarks or registered trademarks of Sun Microsystems, Inc.,
in the United States and other countries. SYS-CON Publications, Inc., is independent of Sun
Microsystems, Inc. All brand and product names used on these pages are trade names,

service marks or trademarks of their respective companies.

SYS-CON
PUBLICATIONS

sean@sys-con.com
AUTHOR BIO

Sean Rhody is the editor-in-chief of Java Developer’s Journal. He is also a principal consultant with Computer Sciences Corporation
where he specilaizes in application architecture – particularly distributed systems.

They Might be Giants

8 APRIL 2000

Java COM

J D J F E A T U R E

They’re one of the
most commonly used

computing tools in
business today, re-

gardless of a com-
pany’s revenues

or number of employ-
ees. Wall Street money mavens

use them, and so does your hometown
accountant…spreadsheets.

Did you ever tweak spreadsheet formulas to play “what-if” games
with your stock portfolio? Have you ever received an e-mail with a
spreadsheet attachment full of sales figures or forecasts? And by the way,
how did your friend send you the results of this week’s fantasy football
league? Thanks largely to the widespread distribution of Microsoft Office
and Microsoft Excel, the spreadsheet is perhaps the top data analysis and
reporting tool in the industry.

WRITTEN BY MARK SPENCER

How to enhance
e-business and
B2B processes
by leveraging
Excel-like power in
multitier applications

9APRIL 2000

Java COM

Distinguished by a rows-and-columns interface that even the casual
computer user can understand, spreadsheets provide a wide range of
functionality that many types of businesses can leverage. They present
data in an understandable format, provide intuitive interfaces for data

collection, deliver fast calculations, and report and analyze
data from databases and other sources.

Given their popularity and effec-
tiveness, it’s logical to use spread-

sheets for data analysis when
building Java-based e-

business and B2B
applications. As you’ll

see later, they’re
especially ef-

fective when

used to build servlets and Java Server Pages. In this capacity spread-
sheets can play the vital role of constructing business logic and rules for
data analysis in the middle of Web-centric, three-tier architectures (see
Figure 1).

Why Use Spreadsheets?
The great advantage to using spreadsheets as a component of a larg-

er application is that they’re perhaps the single most widely utilized and
understood productivity tool in the business world today. Most users,
especially those in financial institutions, already know enough about
them to construct business rules with them, even if they don’t have high-
er-level programming skills such as knowing how to use SQL or stored
procedures. Spreadsheets can ease the complexity and lower the main-
tenance costs of an application by delegating the construction of busi-
ness rules to the user.

State Street Corporation in Boston, for example, makes extensive use
of spreadsheets in an application called NAVAlert. State Street’s fund

managers establish their own business rules within the application’s
spreadsheets to notify them when fund prices meet certain levels. When
the fund managers need to alter the rules to account for changing mar-
ket conditions, no one on State Street’s development team needs to get
involved. Instead the fund managers change the rules in the spread-
sheets by themselves. The same scenario is entirely possible using Java
spreadsheets on the server as templates for incoming data. When the
rules of a business change, a developer or end user can simply provide a
new spreadsheet template that contains the new business logic, thereby
reducing application development time and costs.

Another use of spreadsheets within Java development is to leverage
their inherent analytical capabilities. Especially in applications that call
for specialized computations, the formulas built into spreadsheets,
together with their engineering, statistical and financial functions, can
save developers substantial time. And because most spreadsheets also
provide a charting component for additional data display options, devel-
opers no longer need to worry about providing that functionality from
scratch either.

Where Spreadsheets Are Used
Many corporations are currently using spreadsheets in multitier

architectures in vertical industries such as finance, banking, energy,
insurance, retail, securities, software, and many others. Spreadsheets
can be used to deliver various types of applications including analysis
and reporting, billing and invoicing, cost estimating, expense tracking,
fund processing, risk management, sales forecasting, and others.

Some current examples of where and how businesses are using
spreadsheets in multitier architectures include:
• An investor services company locates spreadsheets on its server to

calculate a constant stream of stock data from databases and other
sources. Users can access the data with their browsers at any time of
day for up-to-date portfolio valuations.

• A financial firm locates spreadsheets on its server to compile data
from different sources into an understandable, easy-to-use file for-
mat. The reports are compiled from the previous business day’s activ-
ity and e-mailed to managers every morning.

• An insurance company customizes spreadsheet interfaces that mimic
paper forms. The spreadsheets are deployed in browsers where users
can get instant calculations and feedback on the data they input.

There are many more examples but as a general rule any situation
that calls for intuitive data-display and -entry, fast calculations, and
robust data reports and analysis is one in which spreadsheets can be
used to advantage.

When to Use Spreadsheets
Spreadsheets are at their best when calculating and analyzing a large

amount of data quickly. This was, after all, their original purpose; their
architecture was developed for performing this exact task.

A developer can determine whether or not an application’s require-
ments truly constitute a large amount of data. For an application with
simple calculations involving a small number of variables, a spreadsheet
calculation engine obviously might not be necessary. But for volumes of

CLIENTS SERVLETS
OR JSP

DATABASES

FIGURE 1 Spreadsheets provide an effective means for building business
logic in three-tier architectures.

Java COM

10 APRIL 2000

data covering a long time period and typically collected from a database,
a spreadsheet provides an extremely manageable paradigm for calcula-
tions and a useful grid interface for presenting and manipulating data.

Using spreadsheets for calculations is especially effective in server-
side applications. For example, data from several sources might be
poured into a spreadsheet for analysis before being passed to clients or
stored in yet another database. Numerous financial services companies
use spreadsheets on the back end for just this purpose.

In a nutshell, one of the strongest facets of spreadsheets is that they
can increase efficiency by performing calculations and data analysis on
the server. This is especially true in distributed, three-tier computing
environments that rely on Java technology.

Options for Using Spreadsheets in Java Development
Java developers have several options for implementing spreadsheet

functionality in their projects. Several factors affect which option to
choose. Most noteworthy is probably the presence (or absence) of Excel
in a distributed environment.

Since familiarity with using Excel is widespread, it makes sense to
leverage the Excel application, the Excel file format and the expertise of
end users whenever possible. But Excel has limitations for Java develop-
ers who deploy applications widely on the Web outside firewalls. These

limitations include a dependence on Windows, a limited API, the inabil-
ity to be embedded and deployed within an application and the inabili-
ty to leverage advances in Web, application and database servers. These
issues noted, developers can choose one of the following options:
• Java developers who aren’t concerned about pure platform-indepen-

dent solutions can use Microsoft’s Visual J++ to access Excel; however,
this provides a limited API to work with and will require execution of
the Java application/servlet in the Microsoft JVM. This also requires
that Excel be present on the desktop, as Excel is unable to be embed-
ded as part of an application.

• A cross-platform solution can be built using the Java Native Interface
(JNI) to communicate through a C++ implemented COM wrapper to
Excel. While this technique is independent of JVM, it still requires
native code and thus is tied to a specific hardware configuration. And
again, this requires Excel to be present and provides a limited API to
customize functionality.

• A third option is to use a JavaBean component that delivers Excel-
compatible spreadsheet functionality, such as Formula One 7.0 from
Tidestone Technologies. Formula One has been certified as 100% Pure
Java, which means that you can use Excel files on non-Windows plat-
forms. It has a defined and documented role as a JavaBean compo-
nent and can be embedded in distributed applications. Formula One’s
API is easily accessible with Java code and allows you to embed a
spreadsheet engine in any tier. It can leverage advances in Java’s use
with Web, application and database servers – and it doesn’t rely on
Excel to be present on the desktop to function.

Formula One is especially effective in the middle layer of three-tier
applications where it can be used to construct business rules, perform
analysis and distribute data at the core of Java applications, servlets,
applets and JavaServer Pages. In these architectures it can be used to
access databases through JDBC, perform calculations and analysis,
and distribute the results between any client/server environment:
HTML for thin clients, Excel for Excel clients or live spreadsheet-pow-
ered applets for “heads-down” users who require interfaces more
robust than static HTML.

With these abilities in mind, the examples in the remainder of this arti-
cle are intended to show how to build Java spreadsheet solutions in envi-
ronments with Formula One – with and without Windows and Excel
being present.

Leveraging Excel on the Desktop With Server-Side Java and MIME Types
The first example shows how to dynamically create a spreadsheet on

a server and deliver its contents to the client through a browser connec-
tion. By setting a MIME type in the servlet code, Excel will be launched
within the browser, giving users the ability to perform further analysis on
the spreadsheet using Excel on their desktops. The architecture of this
example is shown in Figure 2.

These examples use an Oracle8i database with 12 months of sales fig-
ures for a fictitious company. It’s assumed a Web page has been built with
a form allowing users to select the month of sales figures they’d like to
receive in an Excel file. The form has a drop-down box with its NAME
attribute set as “month” and its action pointing to the servlet, ExcelServlet.

The ExcelServlet reads in a prebuilt Excel file to initialize the in-memory
spreadsheet – report_template.xls, see Figure 3 – connects to the database to
populate selected spreadsheet cells from data returned from a JDBC query,
and then writes the spreadsheet to the servlet output stream with an appro-
priate MIME type. This MIME type, “application/vnd.ms-excel”, forces the
browser to load the Excel plug-in and display the spreadsheet.

The database-related procedures have been modularized in the dbMa-
nipulatations.java class (see Listing 1) and the servlet specific code is
shown in ExcelServlet.java (see Listing 2). The class dbManipulations.java
connects to the database via JDBC and populates rows in the report_tem-
plate.xls spreadsheet based on the user input from the Web page. The
ExcelServlet.java class provides the servlet “plumbing” to write the Excel
data to the browser after the model has been dynamically created.

report xls

HTTP Request

telvreS

motsu C

Form ula One
Ja

va
Be

an

egaPbe
W

Excel
report_
template.xls

DATABASE

FIGURE 2 In this example, a servlet receives input from a Web form,
dynamically generates an Excel spreadsheet from a data base,
and delivers it through a browser to Excel on the client.

FIGURE 3 This is the report_template.xls that is used to generate the
reports in these examples.

11APRIL 2000

Java COM

Computer
Job Store

www.computerjobstore.com

Invoking the ExcelServlet from a browser with month and report-
Template parameters should show a Web page like the one depicted in
Figure 4. This demonstrates one way developers can leverage spread-
sheets in the middle tier and Excel on clients’ desktops, even if the appli-
cation’s architecture doesn’t include a Windows-based server.

Leveraging Excel on the Desktop with Server-Side Java and JavaMail
Another option to consider is e-mailing clients the Excel file generat-

ed by Formula One on the server using the JavaMail API. This example of
Formula One is ideal for developers who have a large number of desk-
tops with Excel and a large number of Excel-savvy users who require
time-sensitive data on a recurring basis. For instance, perhaps reports
from the previous day’s business activity could be e-mailed to managers
every morning or portfolio reports could be sent to investors at the close
of trading each day. While this particular example requires a Web server,
it would be easy to convert this example into a stand-alone application,
which could be scheduled to run in the background on a daily basis.

The addition of JavaMail notwithstanding, this implementation is
similar to the prior example and is illustrated in Figure 5.

First, it’s assumed there’s a Web page with a form that asks for an e-
mail address where the report will be sent and a month of sales figures
for Formula One to generate. The page and resulting spreadsheet that is
sent by e-mail could look like those in Figures 6 and 7.

(Note: This demo would also work by accessing the servlet with a
name=value pair that includes the parameters &to=name@domain.-
com&month=SelectedMonth.)

Embedded into a servlet, Formula One uses a spreadsheet created in
Excel as a template – for this example we’ll use the template in Figure 3
from the prior demo – then connects to the database and populates
specified cells with the data values returned from the JDBC call. From
there, it performs a recalculation of the new data, writes the spreadsheet
as an Excel file and e-mails it to the submitted e-mail account using the
standard JavaMail API. The code required to perform these actions can
be found in Listing 3, WebMail.java. As with the prior example, the
dbManipulations.java class of Listing 1 includes the modularized data-
base code and will be needed to compile this servlet.

No Excel? How to Deliver Spreadsheets to Thin and Non-Windows Clients
In Web-based computing developers often don’t have control over

which platform their solutions might eventually operate on. In this situ-
ation a cross-platform applet with Formula One could enable the deliv-
ery of live spreadsheets to the browser. While this is a plausible option,
slow connections and low bandwidths are sometimes a concern, so

Java COM

12 APRIL 2000

e-mail Client

report.xls

e-mail Client

report.xls

SE
RV

LE
T Form ula One

Java Mail

report_
template.xls

DATABASE

FIGURE 5 In this example, Formula One collects data from a database
through JDBC, creates an Excel file and mails the report as
an attachment with the JavaMail API to Excel clients.

FIGURE 4 By using Java, it’s possible to leverage Excel on users’
desktops, even if there isn’t a Windows-based server
involved on the back end.

FIGURES 6 & 7 This is the Web form (top) and spreadsheet (bottom) that
is sent to the designated recipient in this example.

13APRIL 2000

Java COM

Gemstone
www.gemstone.com

developers must be sure their applications minimize download times. In
cases like this it makes sense to perform spreadsheet calculations and
data manipulation on the server and deliver the results to clients
through lightweight HTML or images. With Formula One, it’s possible to
deliver Java-based solutions in this manner.

This example is similar to the others. The same spreadsheet will be
used on the server to calculate sales figures for a selected month. How-
ever, in this case the finished spreadsheet will be written out as an HTML
table through a JSP that utilizes Formula One’s HTMLWriter method. The
requesting HTML page references our JSP page, report.jsp, rather than
the ExcelServlet and passes the requested month as a parameter (see
Figure 8). The code for report.jsp is in Listing 4.

This architecture allows users to leverage a spreadsheet’s calculations
on a server regardless of the operating system or bandwidth situation, as
shown in Figure 9. Formula One also offers the ability to deliver spread-
sheets and charts as static GIF, JPG or PNG images for thin-client envi-
ronments where users simply need to view data. For more information
on Formula One visit their Web site at www.tidestone.com.

Summary
Few technologies are as familiar to users and developers as spread-

sheets. When used as the data analysis component of a larger application,
spreadsheets offer many benefits: developers can leverage their built-in
features such as spreadsheet rules and formulas to increase efficiency and
lower maintenance costs, while users benefit from the low learning curve.

Add Java’s server-side strengths and it becomes clear that a spread-
sheet can be extremely useful behind the scenes of an application, par-
ticularly in the middle layer of three-tier architectures when a large
amount of data needs to be computed and analyzed.

AUTHOR BIO
Mark Spencer is the marketing manager of Tidestone Technologies, Inc. Prior to Tidestone he worked for
three years for Visual Components, which later was acquired by Sybase. He has written numerous articles
and white papers regarding component spreadsheet use in different programming languages.

Java COM

14 APRIL 2000

mspencer@tidestone.com

HTML Table

Form Data

PSJmotsuC

Form ula One
Ja

va
B

ea
n

egaPbe
W

Table
report_
template.xls

DATABASES

FIGURE 8 This example shows how to leverage spreadsheets in thin-
client environments by performing calculations on the server
and exporting the data as HTML.

FIGURE 9 Users who don’t have Excel or are in bandwidth-restricted
areas can still leverage spreadsheets by locating the analysis
on a server and exporting the data as HTML or images.

import java.sql.*;
import com.f1j.util.*;
import com.f1j.ss.*;

public class dbManipulations {
private java.sql.Connection m_sqlCon = null;
private java.sql.Statement m_stmt = null;

public void retrieveAndPopulateDataFromDB(String strMonth,
com.f1j.ss.Book book, int iSheet) throws Exception {

String strQuery = "Select orderid, name, volume, price
from orders, products ";
String strQryCount = "Select count(*) from orders, products ";
// Following are parameters specific to Oracle8I and the
// machine it is used on
// Change to reflect your configurations
String strDriver = "oracle.jdbc.driver.OracleDriver";
String strUrl =
"jdbc:oracle:thin:@webtogo.domain.com:1521:domain";
String strUser = "scott";
String strPassword = "tiger";
int iSrcStartRow = 21;
int iRowCount = 0;

//connect to the database
createConnection(strDriver, strUrl, strUser, strPassword);

if (strMonth == null) // default month name
strMonth = "JANUARY";

else
strMonth=strMonth.toUpperCase();

// Build and execute query string(s)
String strBufWhere = "where upper(orders.month) = '"+strMonth+

"' and products.productid =
orders.productid";

java.sql.ResultSet rs = queryRecords(strQryCount + str-
BufWhere);
if (rs != null && rs.next()) {

iRowCount = rs.getInt(1);
rs.close();

}
rs = queryRecords(strQuery + strBufWhere);

try { // Populate from ResultSet rs to
// Spreadsheet

if (book != null) {
Sheet sheet = book.getSheet(iSheet);
com.f1j.jdbc.JDBC m_gridJDBC = new
com.f1j.jdbc.JDBC(sheet);
com.f1j.jdbc.JDBCQueryObj m_jdbcQryObj = new
com.f1j.jdbc.JDBCQueryObj();

setFlagsJDBCQueryObject(iSrcStartRow, 0, m_jdbcQryObj);
m_gridJDBC.populateGrid(rs, m_jdbcQryObj);

// Add total calculations to the bottom of the data
// and format
int iTotalRow = iRowCount + iSrcStartRow;

sheet.setText(iTotalRow, 1, "TOTAL:");
sheet.setFormula(iTotalRow, 2, "SUM(C"+iSrc-
StartRow+":C"+iTotalRow+")");
sheet.setFormula(iTotalRow, 4, "SUM(E"+iSrc-
StartRow+":E"+iTotalRow+")");

Listing 1: dbManipulations.java

15APRIL 2000

Java COM

The Object People
www.objectpeople.com

Java COM

16 APRIL 2000

sheet.copyRange(iTotalRow, 0, iTotalRow, 4,
sheet, iSrcStartRow-2, 0, iSrc-
StartRow-2, 4,
com.f1j.ss.Constants.eCopyFormats);

// format totals row

// Add Revenue formula column to all retrieved rows
int iSrcCol = 4; //revenue column
sheet.copyRange(iSrcStartRow+1, iSrcCol, iTotalRow-1,
iSrcCol,

sheet, iSrcStartRow, iSrcCol, iSrc-
StartRow, iSrcCol,
com.f1j.ss.Constants.eCopyAll);

// Change Spreadsheet "Title" to correspond to
// requested month
String strTitle = sheet.getText(17, 0) + strMonth;
sheet.setText(17, 0, strTitle);

// Change Chart range to correspond to the # of
// records returned
// The Chart takes its data from the defined names
// "chartData", "chartLegend"
// So we will redefine them to reflect the amount of
// data retrieved
GRChart chart = (GRChart)book.getSheet(iSheet).get
GRObject(3);
chart.setTitle(strTitle);

String sheetName = book.getSheet(iSheet).getName();
book.setDefinedName("chartData",

sheetName+"!E"+(iSrc-
StartRow+1)+":E"+iTotalRow,
0, 0);

book.setDefinedName("chartLegend",
sheetName+"!B"+(iSrc-
StartRow+1)+":B"+iTotalRow,
0,0);

}
}
finally {

//close the database connections
if (rs != null) rs.close();
closeAll();

}
}

private void setFlagsJDBCQueryObject (int iStartRow, int
iStartCol,
com.f1j.jdbc.JDBC-
QueryObj jdbcQryObj) {

jdbcQryObj.setAutoColNames(false); // don't return
// field name as col hdrs

jdbcQryObj.setAutoColFormats(false); // format data
// according to type

jdbcQryObj.setAutoColWidths(true); // autosize columns
jdbcQryObj.setAutoMaxRC(false); // don't change

// max/min on spreadsheet
jdbcQryObj.setStartRow(iStartRow); // start row for

// populating
jdbcQryObj.setStartCol(iStartCol); // start col for

// populating
jdbcQryObj.setColNamesInRow(iStartRow); // put fields

// names in row
}

private void createConnection (String strDriverName,
String strDatasource, String strUsername, String strPass-
word) throws Exception {

Driver d=(Driver)Class.forName(strDriverName).newInstance();
DriverManager.registerDriver(d);
m_sqlCon=DriverManager.getConnection(strDatasource,
strUsername, strPassword);
m_stmt=m_sqlCon.createStatement();

}

// Queries the database using the sqlStatment passed to it.
// It returns the resultset.

private ResultSet queryRecords(String strSqlStmt) throws
Exception {

if (strSqlStmt != null)
return m_stmt.executeQuery(strSqlStmt);

else
return (ResultSet)null;

}

private void closeAll() throws Exception {
if (m_stmt != null)

m_stmt.close();
if (m_sqlCon != null)

m_sqlCon.close();
}

}

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;
import com.f1j.swing.*;

public class Excel97Servlet extends HttpServlet {

public void doGet(HttpServletRequest request, HttpServlet-
Response response)

throws ServletException, java.io.IOException {

ServletOutputStream out = response.getOutputStream();
response.setContentType("application/vnd.ms-excel");

// create a new Formula One workbook and lock it down.
com.f1j.swing.JBook jbook = new com.f1j.swing.JBook();
jbook.getLock();

try {
// read in the excel file we are using as a template
// for this report
jbook.read(getInitParameter("reportTemplate"));

// Populate data from database into spreadsheet
dbManipulations db = new dbManipulations();
db.retrieveAndPopulateDataFromDB(request.getParame-
ter("month"),

jbook.getBook(), 0);
// since we change the contents of the book we force a
// recalc before writing the model.
jbook.recalc();
WriteExcel(out, jbook);
out.close();

}
catch(Throwable e) {

System.out.println(e.getMessage());
}
finally {

jbook.releaseLock();
}

}

// Formatting Excel data requires access to a "seekable" stream.
// Since OutputStream is not seekable, we create a temporary
// file in excel format, then copy the data to the output stream.

private void WriteExcel(OutputStream out,
com.f1j.swing.JBook jbook)

throws Exception {
java.util.Date tempFileName = new java.util.Date();
String tempFilePath = System.getProperty("user.dir") +

java.io.File.pathSeparator +
tempFileName.getTime();

// write the book to a temporary file
jbook.write(tempFilePath, jbook.eFileExcel97);

File tempFile = new File(tempFilePath);
FileInputStream tempfis = new FileInputStream(tempFile);

byte buffer[] = new byte[1024];
long totalBytesRead = 0;
int bytesRead = 0;

while (totalBytesRead < tempFile.length()) {
bytesRead = tempfis.read(buffer);
totalBytesRead = totalBytesRead + bytesRead;
out.write(buffer, 0, bytesRead);

}
tempfis.close();
tempFile.delete();

}
}

Listing 2: ExcelServlet.java

17APRIL 2000

Java COM

Insignia
www.insignia.com

18 APRIL 2000

Java COM

// You will need the activation.jar and mail.jar standard
// java extensions to compile this code.

import javax.mail.*;
import javax.mail.internet.*;
import javax.servlet.ServletException;
import javax.servlet.http.HttpServlet;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;
import javax.servlet.ServletConfig;
import javax.servlet.ServletContext;

public class WebMail extends HttpServlet {
private Session m_session;
private String m_strFile;
private String m_strTempFileName = "report.xls";

public void init(ServletConfig config) throws ServletException {
super.init(config);
ServletContext ctxt = getServletContext();
m_strFile = config.getInitParameter("report_template");

}

public void doGet(HttpServletRequest req, HttpServletRe-
sponse res)

throws ServletException, java.io.IOException {

res.setContentType("text/html");
java.io.PrintWriter writer = res.getWriter();

//start the session
// change the postoffice domain reference
// throughout this code to match your system

java.util.Properties properties = System.getProperties();
properties.put("mail.smtp.host",
"postoffice.domain.com");

//Connect to the store
try {

m_session = Session.getInstance(properties, null);
Store store=m_session.getStore("imap");
store.connect("postoffice.domain.com", "demo", "demo");
sendMessage(req, res, writer);

}
catch (Exception e) {

writer.println("Unable to connect to email account
specified");

}
}

private void sendMessage(HttpServletRequest req,
HttpServletResponse res,
java.io.PrintWriter writer)

throws ServletException, java.io.IOException {

String strFrom = "demo@domain.com";
String strTo = req.getParameter("to");
String strMonth = req.getParameter("month").toUpperCase();
String strSubject = "Sales Figures for the Month of " + strMonth;
com.f1j.ss.Book book = new com.f1j.ss.Book();

String strTempDir = null;
try {

strTempDir = createTemporaryDir();
String strTempFile = strTempDir+java.io.File.separa-
tor+m_strTempFileName;

if (strTempFile != null) {
// Load worksheet template, retrieve data from data-
// base and write to a temporary file.
book.getLock();
book.read(new java.io.FileInputStream(m_strFile));
dbManipulations m_db = new dbManipulations();
m_db. retrieveAndPopulateDataFromDB(strMonth, book, 0);
book.write(book.getSheet(0), strTempFile, book.eFile-
Excel97);
book.releaseLock();

// build 2-part mail message and send it.
MimeMessage message = new MimeMessage(m_session);
Multipart mp = new MimeMultipart();
MimeBodyPart mbp1 = new MimeBodyPart();
MimeBodyPart mbp2 = new MimeBodyPart();

message.setFrom(new InternetAddress(strFrom));
message.setRecipients(Message.RecipientType.TO,

InternetAddress.parse(strTo));
message.setSubject(strSubject);
message.setContent(mp);

mbp1.setText("Report successfully sent");

// create the file attachment part of the message
mbp2.setDataHandler(new javax.activation.DataHandler(

new javax.activation.FileDataSource(strTemp File)));
mbp2.setFileName(m_strTempFileName);

mp.addBodyPart(mbp1);
mp.addBodyPart(mbp2);

//send the message
Transport.send(message);
writer.println("<p> Sales report was sent to: " +
strTo + " </p>");

}
deleteTemporaryDir(strTempDir);

}
catch (Exception e) {
writer.println("<p> " + e.getMessage() + " </p>");
}

}

private String createTemporaryDir() {
String strNewDir = System.getProperty("user.dir") +
java.io.File.separator + (new java.util.Date()).getTime();
java.io.File dir = new java.io.File(strNewDir);
dir.mkdir();
return strNewDir;

}

private synchronized void deleteTemporaryDir(String strTempDir) {
java.io.File dir = new java.io.File(strTempDir);
if (dir.exists()) {

java.io.File file = new java.io.File(strTempDir +
java.io.File.separator + m_strTempFileName);
file.delete();
dir.delete();

}
}

}

<%@ page import="dbManipulations" %>
<%

// create a new formula one workbook
com.f1j.swing.JBook jbook = new com.f1j.swing.JBook();

jbook.getLock();
try {

java.io.File me=new java.io.File(request.getPathTranslated());

jbook.read(me.getParent()+java.io.File.separator+"report_tem-
plate.xls");

dbManipulations db = new dbManipulations();

db.retrieveAndPopulateDataFromDB(request.getParameter("month")
,

jbook.getBook(), 0);

jbook.recalc();
com.f1j.ss.HTMLWriter htmlWriter = new com.f1j.ss.HTMLWriter();
htmlWriter.write(jbook.getBook(), 0, 17, 0, 0, 31, 4, out);

} catch(Throwable e) { System.out.println("Error:
"+e.getMessage()); }
finally {

jbook.releaseLock();
}

%>

Listing 4: report.jsp

Listing 3: WebMail.java

19APRIL 2000

Java COM

KL Group
www.klgroup.com

Java COM

20 APRIL 2000

Segue S
www.seg

oftware
gue.com

21APRIL 2000

Java COM

Speaking of responses, I’d like to take
this opportunity to redress the balance
here. Over the past couple of months
I’ve received some very abusive e-mail
from disgruntled readers, shouting the
odds about a number of things. First of
all, I have no problem receiving e-mail
from readers regarding anything in this
column. In fact, I welcome it. However, if
you expect a reply, then make it polite,
reasonable and – most of all – construc-
tive. If you don’t get a reply from me, you
can safely assume that you
failed one of the criteria above.
The JDJ writers aren’t here to lis-
ten to abuse, but to provide a ser-
vice. To that end we
want to serve you as
best we can. Thus posi-
tive/negative constructive
feedback is always welcome.
Trust me, we get some really wacky e-
mail. One that was particularly scary
was from a gentleman who wanted
Linus Torvald to be jailed. ’Nuff said,
methinks.

Second, let me explain what this
column is all about. It isn’t a technical
column, so if you’re expecting it to be,
stop! Turn back now and save yourself
the disappointment. This is a thinking
column. It’s designed to make you
think about some of the burning issues
that face us all as Java developers. You
may not agree with me, and that’s good.
I want to provoke you. I will on occa-
sion offer some rather controversial
notions. Whether or not I believe them
doesn’t matter. What matters is that I
made you take some time to think
about something from another angle.
The active traffic on the Straight Talk-
ing mailing list proves this to be the
case. So when you read this column,
keep an open mind and allow me the
chance to entertain you…if not pro-
voke you. If we all agreed on every-
thing, the world would be a very dull
place indeed.

Last, I’d like to highlight the purpose
of the Straight Talking mailing list. I
write a piece on it every month, but
some still seem to skip past that section.
I’ve been accused of many things – most
of it I ignore as nonsense. One I refuse to
accept is the accusation that JDJ writers
hide behind their articles and don’t
answer or address feedback. This is
complete nonsense. For starters, the e-
mail address printed with each article
allows you direct access to the author.

Second, we have the mailing list. This
is where we invite you to join and have
your say. Being a JDJ editorial board
member allows me to collate any con-
cerns and relay them to the board to be
addressed. The Straight Talking mailing
list has had much impact on the overall
structure and content of JDJ, and with
your help we aim to keep JDJ the best-
read Java magazine on the planet.

Let me apologize if this has come
over a bit strong, but I want to be clear
about the purpose of this column and
the mechanisms that are available to
you to influence the way JDJ operates.
Contrary to popular belief, you, the
reader, are the most important person to
us and we want to make your time spent

with JDJ as productive as possible. So
help us help you.

With that out of my system, let’s get
on with this month’s Straight Talking
column.

Growing Pains
As CEO of my wee empire I’ve been

faced with many new challenges and this
month have met some wonderful peo-
ple. My company, n-ary, is steadily grow-
ing, so much so that we’re seriously
pushing for space. We need more bodies,
but our present building has simply
stopped taking, so the time has come to
look for new premises. Which is a shame,
as I was kinda liking this place. But I can’t
stand in the way of progress, and my
team is a credit to me, so with this I’ve
put on my real estate hat, looking out for
that perfect location for us all.

Those of you who’ve had deal-
ings with us know that

we’re not the sort of
team that wants to work
in conventional office-

space dwellings. That’s
simply not us. We’re all a little

unconventional in our own spe-
cial way, and as the old saying

goes, “You can’t put a square peg in a
round hole.” At present we’re using an
old converted farmhouse as our head-
quarters, and this has proved to be most
successful, just not quite big enough for
a dot.com company striding into the
millennium (Now that sounded like
some sort of nonsense a marketing type
of person would come up with! I sur-
prise myself at times.)

Our strength is our team, so before
embarking on this search I asked the
troops what sort of offices they’d like to
see themselves in. Darren, who some of
you know as “The Riddler,” came up
with the most interesting answer. He
requested an Ally McBeal–type environ-
ment. I wasn’t too sure what to make of

The Whole World Is Turning AMAZON!

WRITTEN BY
ALAN WILLIAMSON

Java COM

22 APRIL 2000

N
ow that you’re reading this, I wonder if you have a mental picture of me and
what I may be doing as I write this. This isn’t an ego question, merely an
observational point. I have a mental picture of you.You, the typical reader, sit-
ting down, with maybe a cup of coffee, looking for a 10-minute break from the
drudgery of the day. I imagine myself talking to you, on a one-to-one basis. Of
course, it’s a one-sided conversation as I have to wait approximately six weeks
for your response!

23APRIL 2000

Java COM

Hit Software
www.hitsoftware.com

that. Did he mean the large, open-plan
layout, complete with unisex toilets? I
queried him on this and discovered he
was in fact referring to the quantity of
good-looking available women. Bless
him.

All jokes aside, we have only two
women working with us – one is a Java
developer and the other is my PA. I’d
have to say that we are a male-dominat-
ed company. That said, we do have a
woman on the board of directors. When
we get CV’s in, the ones with a
Sex=Female are few and far between.
I’m not sure why this is, but there are a
number of possible reasons for this and
many are controversial.

Do you think there’s a serious lack of
women in this industry? I guess this is
always going to be a controversial topic,
so let’s discuss it on the mailing list as I’d
love to hear your thoughts. I’m not so
stupid as to alienate my female readers
here and now! Knowing how seriously
some of you take this column, I’m going
to body-swerve that particular mine-
field.

But speaking of unisex toilets…do
they really exist? I don’t know of any
company on this side of the Atlantic that
has them. But since it’s an American
idea, do any of our U.S. readers know of
companies that openly advocate them?

I’ll let you know next month how our
new-office search is going. We’re looking
at an old farm where we would convert
the barns and stables into modern
offices, I just need to persuade the pres-
ent owners to accept the amount of
money I’m offering as opposed to the
amount they want. I guess this is what
they call bartering.

Support Award of the Month:
Hall of Shame

This is the second in our new award
section. Last month I chronicled the joys
of ordering from Dell and how much fun
that can be. If you recall, a staff member
told me that Dell didn’t use Internet-
enabled e-mail internally, which I sus-
pected was a bit of a fib. I recently dis-
covered that this was indeed the case –
the support team member who called
me up the day after told me that e-mail
is used a lot and that I could be cc’d into
all relevant communication. What a
sorry tale this was. If Dell ever responds
to me, I’ll let you know the dialog.

I’ve had some interesting feedback
from readers with similar tales. It
appears that if you’re a small company,
or a one-man band, the service from
Dell is pretty poor on the whole. Truly a
shame, as I have no problems at all with
the kit itself.

This month’s award is on hold as
I’m currently researching a number of
queries I’ve had from readers regard-
ing two big boys. Oracle and Silver-
Stream are in the limelight and when I
have more information I’ll report
back.

As a side note, anyone been to the
store at Oracle.com lately? Here’s another
example of a company with absolutely no
imagination. Another Amazon.com clone.
Oracle isn’t the only company to succumb
to this look and feel copying; BOL.com,
Toysrus.com, HomeDepot.com and Comp-
USA.com are just some of the big house-
hold names. Come on, you big corporate

chaps…you spend millions a year on your
marketing departments and still can’t
come up with something that makes you
stand apart from the competition? I bet
Amazon.com is kicking themselves for not
trademarking that look and feel…the
money gleaned from those lawsuits would
have more than made up the operating
loss.

If you feel you’re getting a raw deal
from any company, let me know and I’ll
check it out and see if something more
sinister is going on.

Mailing List
The mailing list is still growing, with

representatives of many different facets of
industry joining in on the fun. I’m thor-

oughly enjoying getting to know you a lot
better, and with this I’m looking to
arrange a sort of Straight Talking party for
JavaOne this year. So stay tuned for that.
We talk about anything that comes into
the mind of our developers. So stop by
and join in the fun. To sign up, or even just
to stop by and have a look at what’s being
posted, head on over to http://listserv.n-
ary.com/mailman/listinfo/straight_talk-
ing.

Our radio show is gaining in popu-
larity (http://radio.sys-con.com/). I and
my cohost, Keith Douglas, present a
daily 15–20 minute Straight Talking
show. We play music, talk Java and talk
mailing list. And with The Riddler offer-
ing prizes for anyone that correctly
answers his riddles, what have you got
to lose?

Salute of the Month
The award this month goes to the

active group of correspondents on our
mailing list. You bring a much welcome
break from the norm with refreshing
views and takes on a number of issues.
I’ve learned a lot from you all, and I hope
we can meet up very soon. As you know,
JavaOne is looming, and I’m hoping to
be able to put faces to the names at the
party mentioned above. Let me know if
you intend to come to JavaOne.

• • •
Now that I end this column, I end it

in the same state as I end the month –
with a smile. I’ve been on the prowl for
a new car. Over the last 12 months I’ve
been driving a wonderful wee Toyota
MR-2, and I have to say I loved it. How-
ever, as you know, picking up certain
Sun dignitaries from the airport did
present a certain logistical problem
due to the lack of boot (sorry…trunk)
space. Besides, I was also getting a lit-
tle bored with not having a backseat.
That said, I recently took delivery of a
brand spanking new n-ary blue Subaru
Impreza. For those of you that don’t
know of this particular motor, it’s the
one leading the world rally champi-
onships. I’m very pleased with it as I
know I can take passengers, which is a
real novelty.

See you next month.

AUTHOR BIO
Alan Williamson is CEO of n-ary consulting Ltd., the first
pure Java company in the United Kingdom.The firm, which
specializes solely in Java at the server side, has offices in
Scotland, England and Australia. Alan is the author of two
Java servlet books, and contributed to the Servlet API. He
has a Web site at www.n-ary.com.

Java COM

24 APRIL 2000

This is a thinking

column. It’s

designed to

make you think

about some of

the burning

issues that face

us all as Java

developers

‘‘

’’

alan@sys-con.com

25APRIL 2000

Java COM

Prosyst
www.prosyst.com

Java COM

E
JB servers are transactional servers that

allow developers to concentrate on business

logic. The EJB model implements two-

phase commits, transaction context prop-

agation and distributed transaction, although it’s up to

the vendors to decide which technique to use.

A transaction is formally defined as an “ACID” (atomic, con-
sistent, isolated, durable) unit of work.
• Atomic transactions are “all or nothing.” They either work or

they don’t – they’re never left incomplete.
• Consistent transactions always leave the system in a consis-

tent state.
• Isolated transactions execute in a safe manner – they won’t fail

if other transactions running on the same server are failing.
• Durable transactions can survive system failures once they’re

completed and committed.

For example, an online sale may involve the following steps:
1. Begin transaction.

Charge card sale amount.
Update sale database.
Update shipping database.

2. Commit transaction.

The transaction can end in one of two ways: (1) in a commit and
everything is saved; or (2) if any step within the transaction fails, the
effects of all preceding steps are rolled back or undone. For example, if
the shipping database can’t be updated, the charge isn’t made and the
sale database isn’t updated.

In a distributed environment handling transactions involves coordi-
nating the various databases that participate in the transaction. In the
EJB framework the bean developer can simply define the transaction
policy for the bean during the deployment process, using declarative
statements, and let the container handle all distributed transactions
(called bean-demarcated transactions). Alternatively, the developer can
take explicit control of transactions (called client-demarcated transac-
tions).

Transactional
Scope and
Attributes

Transactional scope is
an important part of under-
standing how transactions
work. In EJBs the scope of a transac-
tion includes every bean that partici-
pates in a unit of work – the bean method.
The scope of a transaction can be traced by
looking at the thread of execution. The trans-
action is propagated to a bean when that
bean is invoked and included in the scope of
the transaction. Of course, the thread of exe-
cution is not the only determining factor in
transactional propagation; transactional attributes is the other.

EJB
TRANSACTIO

Understanding
EJBTransactions
Understanding
EJBTransactions

J D J F E A T U R E

APRIL 200026

WRITTEN BY SAMEER TYAGI

An enterprise bean can take one of the following six attributes in the
deployment descriptor, and the container manages the transactions
according to the specified attribute. Transaction attributes can be speci-
fied for the entire bean or the bean can be fine-tuned by specifying the
attributes for individual methods.
1. TX_NOT_SUPPORTED (see Figure 1): This tells the container to invoke

bean methods without a transaction context. If a client invokes a bean
method from within a transaction context, the container suspends the
association between the transaction and the current thread before
invoking the method on the enterprise bean instance. The container
then resumes the suspended association when the method invocation
returns. The suspended transaction context isn’t passed to any enter-
prise bean objects or resources that are used by this bean method.

2. TX_SUPPORTS (see Figure 2): This tells the container to include the
bean or method within the transaction scope in which it is invoked. If a
method is part of a transactional scope and it invokes any bean with this
attribute, the invoked bean and everything it accesses become a part of
the transaction.

If the client invokes the bean method without a transaction context, the
container invokes the bean method without a transaction context.

3. TX_REQUIRED (see Figure 3): This tells the container that
the bean method must be invoked within a transaction
scope. If a client invokes a bean method from within a trans-
action context, the container invokes the bean method
within the client transaction context. If a client invokes a
bean method without a transaction context, the container
creates a new transaction context for the invoked bean. The
transaction context is then passed to any beans that are
used by this bean method.

4. TX_REQUIRES_NEW (see Figure 4): This tells the
container to always invoke the bean method within
a new transaction context, regardless of whether the
client invokes the method within or without a trans-
action context. The transaction context is passed to
any enterprise bean objects or resources that are
used by this bean method.

5. TX_MANDATORY (see Figure 5): This directs the con-
tainer to always invoke the bean method within the
transaction context associated with the client. The
difference between this and the TX_REQUIRED
attribute is that if the client attempts to invoke the
bean method without a transaction context, the con-
tainer throws the javax.jts.TransactionRequiredEx-
ception exception. The transaction context is passed
to any beans that are used by the invoked bean
method.

6. TX_BEAN_MANAGED (see Figure 6): This tells the container that
the bean class doesn’t have its transactional context managed by
the server but it uses JTA, more specifically the javax.jts.UserTrans-
action, to explicitly manage transaction boundaries.

Using this attribute, however, imposes a restriction that the attri-
butes of different methods cannot be mixed; if even one method
has this attribute, then all methods must manage transaction on
their own.

Making a bean transactional is expensive at runtime; since it partici-
pates in a transaction and conforms to ACID rules, its services can’t be
shared during the life of a transaction. Declaring a bean to be
TX_NOT_SUPPORTED improves performance and may be desirable for
EJBs that provide stateless service as they need to conform to the ACID
rules.

Java COM

B
ONS

Transactional scope is
an important part of
understanding how

transactions
work

27APRIL 2000

Java COM

28 APRIL 2000

Transaction Isolation Levels
The transaction isolation level determines how isolated one transac-

tion is from another for read purposes only. These isolation levels are
defined in terms of three phenomena (defined in the ANSI/ISO SQL
standard -SQL92) that must be prevented between concurrently execut-
ing transactions.
• Dirty reads: A transaction reads data written by another transaction

that hasn’t been committed yet. In other words, a transaction reads a
database row containing uncommitted changes from a second trans-
action.

• Nonrepeatable reads: A transaction rereads data it has previously read
and finds that another committed transaction has modified or delet-
ed the data. In other words, one transaction reads a row in a table, a
second transaction changes the same row and the first transaction
rereads the row and gets a different value.

• Phantom reads: A transaction reexecutes a query, returning a set of
rows that satisfies a search condition, and finds that another commit-
ted transaction has inserted additional rows that satisfy the condition.
In other words, one transaction reads all rows that satisfy a SQL
WHERE condition and a second transaction inserts a row that also sat-
isfies the WHERE condition. The first transaction applies the same
WHERE condition and gets the row inserted by the second transac-
tion.

Isolation levels aren’t new to EJBs; EJB defines these levels based on
the ANSI-SQL92 standards. They’re mapped in JDBC to the static vari-
ables defined in the java.sql.Connection interface. Isolation level, like
attributes, can be fine-tuned by specifying them at the method level for
EJBs; however, all methods invoked in the same transaction must have
the same isolation level.
1. TRANSACTION_READ_UNCOMMITTED: The transaction can read

uncommitted data (data changed by another transaction still in
progress).

2. TRANSACTION_READ_COMMITTED: The transaction can’t read
uncommitted data.

3. TRANSACTION_REPEATABLE_READ: The transaction can’t change

data that’s being read by another transaction. Methods with this
isolation level, besides having the same behavior as TRANSAC-
TION_READ_COMMITTED, can only execute repeatable reads.

4. TRANSACTION_SERIALIZABLE: The transaction has exclusive read
and update privileges to data by locking it; other transactions can nei-
ther write nor read the same data. (This does to transaction what the
synchronized keyword does to methods.) It is the most restrictive
transaction.

Make no mistake – although the TX_SERIALIZABLE attribute guar-
antees the highest level of data integrity, it is offset by a performance
slag because even simple reads must wait in line. EJBs that need to
handle a large number of concurrent transactions should avoid this
level. By understanding the level of reads that will occur on the data-
base and how the database handles locking and choosing the correct
isolation level, the EJB can be fine-tuned to peak performance (see
Table 1).

Client-Demarcated Transactions
JTS is a specification based on the CORBA OTS 1.1 for implementing

a Java transaction manager that serves as an intermediary between an
application and one or more transaction-capable resource managers,
such as database servers and messaging systems. The JTS specification
includes the JTA API that is used by application programmers to group
operations into one or more logical transactions. The Java mapping of
the OMG OTS 1.1 specification is specified in two packages:
org.omg.CosTransactions and org.omg.CosTSPortability. JTA actually
provides three types of services:

Parent Child

TX NOT
 SUPPORTED

No Context New Context Parent Context

FIGURE 1 Transaction propagation for
TX_NOT_SUPPORTED

Parent Child

TX
 SUPPORTS

FIGURE 2 Transaction propagation for
TX_SUPPORTS

Parent Child

TX
 REQUIRED

Parent Child

TX
 REQUIRED

FIGURE 3 Transaction propagation for TX_REQUIRED

Parent Child

TX
 REQUIRES
 NEW

Parent Child

TX
 REQUIRES
 NEW

FIGURE 4 Transaction propagation for TX_REQUIRES_NEW

Parent Child

TX
 MANDATORY

Parent

TX
 MANDATORY

EXCEPTION

Child

FIGURE 5 Transaction propagation for TX_MANDATORY

Parent Child

TX BEAN
 MANAGED

FIGURE 6 Transaction propagation for
TX_BEAN_MANAGED

TABLE 1 Isolation levels and reads

ISOLATION LEVEL DIRTY READ NONREPEATABLE READ PHANTOM READ
TX_READ UNCOMMITTED Possible Possible Possible
TX_READ COMMITTED Not possible Possible Possible
TX_REPEATABLE READ Not possible Not possible Possible
TX_SERIALIZABLE Not possible Not possible Not possible

29APRIL 2000

Java COM

Flashline
www.flashline.com

Java COM

30 APRIL 2000

• Transactional operations in client applications
• Transactional operations in application servers performed on behalf

of clients
• Global transactional management in a Java transaction manager,

coordinating multiple transaction-capable resource managers such as
database servers and messaging systems

EJBs use the high-level transaction manager interface provided by
JTA, while the EJB server uses the JTA high-level transaction manager
interface and a standard Java mapping of the X/Open XA protocol to
handle transactions (javax.transaction.xa package). EJBs use the simple
javax.transaction.UserTransaction interface to communicate with the
transaction manager and control transaction boundaries programmati-
cally. (The EJB specification doesn’t stipulate any specific transaction
service or protocol but requires that the javax.transaction.UserTransac-
tion interface of the JTS be exposed to enterprise beans.) Important
methods in UserTransaction interface are:

public void begin()
public void commit()
public int getStatus()
public void rollback()
public void setRollbackOnly()
public void setTransactionTimeout()

The UserTransaction.begin() method starts a global transaction and
associates a javax.transaction.Transaction with the execution thread. It
throws the NotSupportedException when the calling thread is already
associated with a transaction and the transaction manager implementa-
tion doesn’t support nested transactions.

The UserTransaction.commit() method completes the transaction. If
at this point the transaction needs to be rolled back instead of being
committed, the transaction manager does so and throws a RollbackEx-
ception to indicate it.

The UserTransaction.rollback() method undoes any changes made
since the start of the transaction and removes the association between
the Transaction and the execution thread.

GETTING TRANSACTION ACCESS
As mentioned earlier, the ability of the bean to access the transaction

service can’t be selectively applied to only certain methods of the bean.
All methods must have the TX_BEAN_MANAGED attribute. That said,
bean methods can get access to the transaction service through the
getUserTransaction() method of the javax.ejb.EJBContext interface (the
superinterface for SessionContext and EntityContext).

public void doTransaction(String customerName, String password,int

age) throws MyException{

try{

UserTransaction trans=sessionctx. ctx.getUserTransaction().begin();

Context ctx = new InitialContext();

TranstestHome home = (TranstestHome)

ctx.lookup("ejb.TranstestHome"); Transtest

bean = home.create();

bean.putUser("Sameer","word");

bean.putAge("Sameer",10);

trans.commit();

}catch(Exception e){

trans.rollback();

throw new MyException("an exception occurred" +e);

}

}

This UserTransaction also defines two methods: setRollbackOnly()
and getRollbackOnly(). The first method allows the bean to veto a trans-
action explicitly. Once invoked, the transaction can’t be committed by
anyone, including the container. The second method remains true if the
transaction has been so marked and can be used to avoid further unnec-
essary work in the method.

JTA allows the UserTransaction object to be exposed via JNDI. EJBs
shouldn’t use this approach as it compromises the “middleware porta-
bility”; that is, other EJB servers might not support that approach.

Context ctx = new InitialContext();

UserTransaction utx = (UserTransaction)ctx.lookup("ajndiname");

utx.begin();

// do work

utx.commit();

With entity beans and stateless session beans, a transaction managed
with the UserTransaction must start and end in the same method. The
reason is that entity and stateless session bean instances are shared
across many clients by instance pooling and instance swapping on the
server.

Stateful session beans allow the UserTransaction object to span mul-
tiple method calls because there’s always one instance associated with a
client, and it maintains conversational state. This bean state (and state
of the transaction) is consistent even when the container makes it
undergo an internal activation-passivation cycle to conserve server
resources.

public class MyStatefulBean implements SessionBean {

public SessionContext ctx;

public void setSessionContext(SessionContext ctx){

this.ctx=ctx;

}

public void method1(){

ctx.getUserTransaction().begin();

// do some work

}

public void method2(){

// do some more work

}

public void method3(){

// do yet some more work

// and finally commit

ctx.getUserTransaction().commit();

}

Repeated calls to getUserTransaction() in a stateful session bean
return a reference to the same UserTransaction object. Its state can be
checked using a UserTransaction.getStatus() call.

myCient
Client

Middle create()

create()

home:
MiddleHome

remoteinterface
:Middle

:
TranstestHome

secondRemote:
Transtest

This method
call throws an

application
Exception

doTransaction(String, String, int)

putUser(String, String)

putAge(String, int)
throw new
MyException()

FIGURE 7 Sequence diagram for the exception-handling example

31APRIL 2000

Java COM

Object Switch
www.objectswitch.com

Java COM

32 APRIL 2000

Stateful session beans involve conversational state between method
calls. Sometimes it may be desirable to cache this transactional state and
postpone database updates. The javax.ejb.SessionSynchronization
allows the server to inform a stateful session bean of the various stages
in the transaction by invoking callback methods such as:
• afterBegin(): Notifies the bean that a new transaction has started –

called before the EJB delegates the business methods to the instance
• afterCompletion(): Notifies the bean that the transaction has com-

pleted – can be used to reset instance variables since it will always be
invoked

• beforeCompletion(): Notifies the bean that the transaction is about to
be committed

Client-demarcated transactions in stateful session beans across
methods should be avoided since they tend to be overtly complex and
any improper method invocation locks up resources. Once a stateful ses-
sion bean is a part of a transaction, there’s no way for it to be accessed by
any other transaction context (e.g., a method with TX_REQUIRES_NEW
is invoked) and the bean can’t be removed. In the example above,
resource locking will happen when the client doesn’t invoke method3().

Exception Handling and Transactions
What happens when exceptions occur depends on the type of excep-

tion (checked or unchecked), isolation level and the transactional
attribute of the bean method.

The first rule, which may sound strange, is that any exception thrown
outside the transaction scope causes the transaction to roll back.

Consider an example of a client invoking a method called doTransac-
tion() on a stateless session bean called MiddleBean. The bean internal-
ly then invokes methods on another stateless session bean called
TranstestBean. The required code for these beans and the client can be
seen in Listings 1 to 4. The sequence of events that occur as a result of the
client call is shown in Figure 7.

The two beans are deployed with the transaction attributes shown in
Table 2 and what happens as a result of these attributes is summarized
in Figure 8.

In the first case the transaction context is propagated to the
TranstestBean bean.

When the exception is thrown in the second bean, it falls within the
transaction context; it propagates up and the container traps it in the
first bean and rolls back the transaction.

In case two the second bean doesn’t participate in the transaction
and the transaction context is not propagated to it. The exception
thrown falls outside the transaction context; the container detects this
and rolls back the transaction. There is no way, however, to undo any
changes made in the second bean.

In the third case the second bean has a new transaction context for each
of the methods. The transaction for the exception-throwing method is rolled
back, the exception moves up and the container rolls back the initial trans-
action. The other method executes successfully in its own transaction.

In general, methods should be logically atomic – all or nothing. If an
exception is intended to indicate that the method can’t complete suc-
cessfully, it shouldn’t be caught. If it is caught, the method should try to
correct the problem and continue. The method must throw the exception
and propagate out of the method for the transaction to be rolled back.

Application exceptions won’t cause a rollback if they’re thrown and
caught within the transactional scope. Runtime exceptions or unchecked
exceptions, on the other hand, always cause a transaction to roll back,
regardless of the transaction attribute or transactional scope.

Unilateral Decisions
The transaction manager allows certain heuristic or speculative deci-

sions to be made based on the state of all participating resources in a
transaction and the underlying two-phase commit protocol. A heuristic
decision occurs when one of the resources in the transaction unilateral-
ly decides to commit or roll back the transaction without permission
from the transaction manager. This breaks the atomicity of the transac-
tion and is captured by the manager in the following exceptions:
• javax.transaction.HeuristicCommitException is thrown when a roll-

back is requested but a heuristic decision was made and all updates
were committed.

• javax.transaction.HeuristicMixedException is thrown when a heuris-
tic decision was made and some updates have been committed and
others were rolled back.

• javax.transaction.HeuristicRollbackException is thrown when a
commit is requested but a heuristic decision was made and all rele-
vant updates were rolled back.

Resources
1. A complete definition of two-phase commits by SEI:

www.sei.cmu.edu/activities/str/descriptions/dtpc_body.html
2. Datamation Magazine. “What a two-phase commit is and how it

works”: www.datamation.com/datab/twophase.html
3. SQL 92 standards: www.ansi.org
4. Java Transaction API: http://java.sun.com/jta
5. EJB home page at SUN: http://java.sun.com/products/ejb
6. The Oracle technical network: http://technet.oracle.com/
7. The org.omg.CosTSPortability and other similar packages:

http://java.sun.com/products/jts/javadoc/org/omg/CosTransac-
tions/package-summary.html

8. Complete source code, console dumps, SQL test queries and UML
diagrams: www.JavaDevelopersJournal.com

AUTHOR BIO
Sameer Tyagi has almost four years’ experience in n-tier Internet and intranet application development. He currently
architects server-side and enterprise Java applications and writes regularly for online and print publications.

TABLE 2 The three scenarios that occur when this deliberately planted
exception is thrown

PARENT CHILD
TRANSACTION EXPLANATION(MIDDLEBEAN) (TRANSTESTBEAN)

TX_REQUIRES_NEW TX_REQUIRES Rollback because of second
bean transaction context

TX_REQUIRES_NEW TX_NOT_SUPPORTED No rollback in second bean
because it is not in context.

TX_REQUIRES_NEW TX_NOT_REQUIRES_NEW One exception-throwing
method is rolled back, the
other is not, because each

method is in a new context.

bytecode@crosswinds.net

TX REQUIRES NEW TX REQUIRES

begin

 method ()

rollback

begin

rollback

M
vException

TX REQUIRES NEW TX REQUIRES NEW

begin

 method ()

rollback

TX REQUIRES NEW TX NOT
SUPPORTEDbegin

 method ()

rollback M
vException

begin
 method ()
commit

MvException

begin
 method2 ()
rollback

FIGURE 8 The three scenarios that occur when a deliberately planted
exception is thrown

33APRIL 2000

Java COM

StarBase
www.starbase.com

Java COM

34 APRIL 2000

package sameer.ejb;

import javax.ejb.*;
import java.rmi.RemoteException;

public interface Middle extends EJBObject {
public void doTransaction (String customerName,String pass-

word,int age) throws RemoteException;

}

package sameer.ejb;

import javax.ejb.*;
import java.rmi.RemoteException;

public interface MiddleHome extends EJBHome {
Middle create() throws CreateException, RemoteException;

}

package sameer.ejb;

import javax.ejb.*;
import java.io.Serializable;
import java.rmi.RemoteException;
import javax.naming.*;
import java.util.*;
import java.sql.*;

public class MiddleBean implements SessionBean {

public void ejbActivate() {}
public void ejbRemove() {}
public void ejbPassivate(){}
public void setSessionContext(SessionContext ctx) {}
public void ejbCreate () throws CreateException {}

public void doTransaction(String customerName, String pass-
word,int age)

throws MyException{
try{
Context ctx = new InitialContext();
TranstestHome home = (TranstestHome)
ctx.lookup("ejb.TranstestHome");
Transtest bean = home.create();

bean.putUser("Sameer","word");
bean.putAge("Sameer",10);

}catch(Exception e){
throw new MyException("an exception occured" +e);

}
}

}

package sameer.ejb;

import javax.ejb.*;
import java.rmi.RemoteException;

public interface Transtest extends EJBObject {

public void putUser (String customerName,String password)
throws RemoteException,MyException;

public void putAge (String customerName,int age) throws
RemoteException,MyException;
}

package sameer.ejb;

import javax.ejb.*;
import java.rmi.RemoteException;

public interface TranstestHome extends EJBHome {
Transtest create() throws CreateException, RemoteException;

}

package sameer.ejb;

import javax.ejb.*;
import java.io.Serializable;
import java.rmi.RemoteException;
import java.util.*;
import java.sql.*;
public class TranstestBean implements SessionBean {

public void ejbActivate() {}
public void ejbRemove() {}
public void ejbPassivate(){}
public void setSessionContext(SessionContext ctx) {}

public void ejbCreate () throws CreateException {}

public void putUser(String customerName, String password)
throws MyException{

try{
String str = "INSERT INTO USERTABLE (name, pwd) VALUES ('" +
customerName + "','" +

password +"')";
System.out.println ("Executing stmt: " + str);
new weblogic.jdbc.jts.Driver();

Connection
conn=DriverManager.getConnection("jdbc:weblogic:jts:demoPool") ;

Statement stmt=conn.createStatement();
int rs=stmt.executeUpdate(str);
System.out.println(">>>>Username/Pwd insert succeeded
for "+ customerName +"

and password "+password);

throw new MyException(); // delibrately throw an applica-
tion exception

}catch(SQLException se){
throw new MyException("There was an exceptin "+se);
}

}

public void putAge(String customerName,int age) throws
MyException {
try{
String str ="INSERT INTO AGETABLE (name, age) VALUES ('" +
customerName + "',"

+ age +")";
System.out.println ("Executing stmt: " + str);

// Class.forName("weblogic.jdbc.jts.Driver");
new weblogic.jdbc.jts.Driver();
Connection conn=DriverManager.getConnection("jdbc:weblog-
ic:jts:demoPool");
Statement stmt=conn.createStatement();
int rs=stmt.executeUpdate(str);
System.out.println(">>>>Username/Age insert succeeded for
"+ customerName +"

and age "+age);
}catch(SQLException se){
throw new MyException("There was an exceptin "+se);

}
}

}

package sameer.ejb;

public class MyException extends Exception {
public MyException() {}
public MyException(String message) {
super(message);
}

}

package sameer.ejb;

import javax.ejb.*;
import javax.naming.*;
import java.rmi.RemoteException;
import java.util.*;

public class Client {
static String url = "t3://localhost:7001";
static String user= null;
static String password= null;

public static void main(String[] args) throws Exception {
Context ctx = getInitialContext();
MiddleHome home = (MiddleHome) ctx.lookup("ejb.MiddleHome");
Middle bean = home.create();
bean.doTransaction("Sameer","word",26);

}

public static Context getInitialContext() throws Exception
{

Hashtable h = new Hashtable();

h.put(Context.INITIAL_CONTEXT_FACTORY,"weblogic.jndi.WLIni-
tialContextFactory");

h.put(Context.PROVIDER_URL, url);
return new InitialContext(h);

}
}

Listing 4: The client for the sessionbean MiddleBean

Listing 3: The application exception class that is deliberately thrown

Listing 2C: The stateless session bean TranstestBean

Listing 2B: The home interface of the stateless session bean TranstestBean

Listing 2A: The remote interface of the stateless session bean TranstestBean

Listing 1C: The stateless session bean MiddleBean.java

Listing 1B: The home interface of the stateless session bean MiddleBean.java

Listing 1A: The remote interface of the stateless session bean MiddleBean.java

35APRIL 2000

Java COM

Sybase
www.sybase.com

E J B H O M E

A
s much as I hate to admit it, Microsoft was a pioneer in
server-side component architectures. Its COM/DCOM
(Distributed Component Object Model) server-side com-
ponent model for building and deploying components in
the Microsoft Transaction Server (MTS) environment
already had applications in production by the time the
Enterprise JavaBeans specification was publicly released in
March 1998.

A stateless component model,which can meet the demand of your high-volume distributed systems

MTS’s approach toward declarative,
container-managed components is
reflected in the specification’s notions of
EJB servers and containers, and declara-
tive, transactional properties of enterprise
beans through deployment descriptors.

Also, Microsoft’s distributed compo-
nent architecture, DCOM, is based on
remote procedure calls to stateless com-
ponents running within the MTS. This
model takes advantage of resource pool-
ing – such as connection pools to the
database and instance pooling – to pro-
vide a highly scalable distributed com-
ponent environment. Microsoft’s core
argument for its stateless component
architecture is that stateful servers can’t
scale. A stateful architecture maintains
information between calls from a client,
thereby holding resources within the
server that could be used for other pur-
poses or freed altogether. An application
is scalable when it maintains a certain
level of performance even as the number
of users and complex transactions per
second grows. Thus, from Microsoft’s
point of view, scalability is achieved by
stateless business components that don’t
hold precious resources from others in
need of their services.

The initial release of the EJB specifi-
cation required session bean compo-
nent support for 1.0 compliance. How-
ever, unlike Microsoft’s server-side com-
ponent model, the 1.0 specification
offered two types of components: state-
ful and stateless session beans. With
support for stateful server architectures,
EJB split from its Microsoft lineage. In
this month’s EJB Home, however, I dis-
cuss the common genes between the
two component models, focusing strict-
ly on stateless components.

Stateless Session Beans
Unlike your neighborhood coffee

beans, session beans come in only two

flavors: stateful and stateless. A stateful
session bean holds conversational state
between method invocations in the
form of instance variables from a single
client while a stateless session bean
maintains no state between method
invocations.

Stateful and stateless session Beans
have some commonalities:
1. They are relatively short-lived, non-

persistent components.
2. They generally do not survive an EJB

server crash.
3. They are transaction aware (restric-

tions in stateless session beans will be
covered shortly).

4. They are single-threaded, servicing a
single client at a time.

In other words, all session beans rely
on their container to manage thread
access to the bean, ensuring it has only
one thread manipulating the bean at a
time. This restriction (container-man-
aged threading) is actually enforced on
all enterprise beans, not just session
beans. Spawning threads in your enter-
prise beans isn’t a good practice!

Despite their common features,
there are some major differences. The
lack of conversational state inherent in
stateless session beans binds them
closely to Microsoft’s COM/DCOM.
Also, while stateful session beans
remain uniquely identifiable within
their container, all instances of stateless
session beans are equally capable of
handling a client request. When a client
compares two EJB objects of the same
stateless session bean, they will always
be equal. The following code provides
an example of this comparison:

CustomerMgrHome home = (Customer-

MgrHome)

ctx.lookup("java:comp/env/ejb/homelo-

cation");

CustomerMgr mgr1 = home.create();

CustomerMgr mgr2 = home.create();

return mgr1.isIdentical (mgr2) ; //

return value will be true!

Because each stateless session bean
of the same class is equal, any method-
ready instance is equally qualified to
service a request from a client. This
allows for a highly scalable middle-tier
environment in which the server can
instantiate and destroy beans at will to
support extreme fluctuations in user
volume. Speaking of creating and
destroying bean instances, let’s take a
look at the life cycle of a stateless session
bean for a clear understanding of just
how simple it is for the server to support
stateless components.

Life Cycle of a Stateless Session Bean
A stateless session bean basically has

two states: (1) nonexistent, and (2)
method-ready. The EJB container does
three steps to bring your stateless bean
into a position where it is ready to satis-
fy a client request. First, the container
allocates a new instance of the bean into
memory. Next, the setSessionCon-
text(javax.ejb.SessionContext ctx) me-
thod is called to set the bean’s Session-
Context. Last, the container calls the
bean.ejbCreate () method, allowing the
bean to perform any initialization code.

Enterprise JavaBeans uses “passiva-
tion” to manage large numbers of enter-
prise beans. In EJB, passivation is the
process of storing a bean’s state to a per-
sistent store to release resources in the
server. During the life cycle of an enter-
prise bean, passivation may occur if the
bean hasn’t been accessed by the client
for some period of time; however,
because stateless session beans have no
state to store, they aren’t passivated by
their container. Instead, ejbRemove() is
called on the instance of the bean to

WRITTEN BY
JASON WESTRA

What do MTS and EJB Have in Common?

Java COM

36 APRIL 2000

37FEBRUARY 2000

Java COM

Hot Dispatch
www.hotdispatch.com

allow it to release any resource(s) it may
have opened, and the instance is simply
destroyed (or pooled).

Scalability
While stateful server architectures

are necessary in some lines of business,
such as real-time quote systems or mili-
tary command-and-control centers,
higher scalability is generally achieved
through stateless server components or
session beans.

Stateless session beans are more
scalable than stateful beans due to less
resource allocation and management,
and the clustering capabilities of state-
less session beans.

With stateless session beans there’s
no need to hold resources or state
longer than a method call. This way,
the server isn’t overburdened by main-
taining information for an extended
period of time. While passivation
relieves the server of unused resources,
the process requires resources to mon-
itor the bean activity and to store the
bean state to a pseudopersistent stor-
age until the bean’s services are needed
again. Stateless beans aren’t passivat-
ed; thus they demand no maintenance
overhead.

The problem with stateful, distrib-
uted components occurs when the com-
ponent’s client either disconnects or
fails to disconnect from the component.
In some cases your server will meet a
gradual degradation in performance
until the server is recycled, thereby
releasing the locked resources. For
example, let’s say the stateful session
bean you’re coding connects to a data-
base in its ejbActivate() method and
holds on to the connection to handle
subsequent calls from its client. When
ejbRemove() is invoked on the bean, it
releases its connection. However, if the
client forgets to call remove() on the
bean, the database connection will be
tied up until the bean is passivated.
Worst of all, if a stateful bean is within a
transaction, the passivation service isn’t
allowed to store the bean. This scenario
may prevent other clients from perform-
ing their work efficiently if the bean’s
transaction locked rows in the database.

Instance pooling is another tech-
nique used by stateless architectures to
lower the demands placed on the server
and provide faster allocation of stateless
components. Instance pools contain
“waiting” components that are pulled
from the pool on demand, then placed
back into the pool when they’re finished

servicing the request (see Figure 1). EJB
containers in the market today usually
provide some form of instance pooling
to achieve scalability while decreasing
the amount of garbage collection need-
ed to clean up destroyed bean instances.
Recall the life cycle of a stateless session
bean. The bean is either nonexistent or
method-ready. When moving from a
state of nonexistent to method-ready,
the container allocates memory for the
bean. The container may create a new
instance each time; however, a more
efficient way to obtain a bean instance
would be to grab preallocated memory
from an instance pool of empty beans.
Instance pooling is purely implementa-
tion and not mandatory in the EJB spec-
ification.

Last, stateless components scale well
because they’re easy to deploy in clus-
tered EJB servers. Clustering allows
components to be replicated across
multiple servers on multiple machines,
providing fault tolerance and load bal-
ancing. Clustering typically makes it
harder for the EJB server to send
requests back to the same instance over
multiple calls from a client. Because
stateless beans don’t manage conversa-
tional state, it doesn’t matter which
instance services the client’s next
request.

Stateless beans scale better than
stateful beans in a clustered environ-
ment in which 24/7 support is a necessi-
ty. If you need your EJB application to
provide such support, failover is a main
concern for your architecture team. In
stateless server architectures any com-
ponent can service a request.

Figure 2 shows how a client request
on a clustered session bean can be
transparently serviced during a software
failure. When the client calls foo() on the
session bean’s remote interface, a smart
object implementing the bean’s remote
interface intercepts the call and routes it
to a clustered bean. During the method
invocation, a software failure occurs;
however, because every stateless session
bean in the cluster is equally capable of
servicing the client, the router simply
calls the real remote interface of a func-
tional bean in another EJB container.

Transparent failover and clustering
in stateful architectures isn’t so easy.
While any stateless bean can service a
client request in the event of a failure, in
24/7 stateful server architecture the
server must perform a secondary, “hot”
backup of the primary stateful bean in
case the primary fails. Tracking deltas
and passing changes from a primary
bean to a secondary bean is time con-
suming and results in unnecessary chat-
ter between the two components. I rec-

E J B H O M E

FIGURE 2 Automatic failover for client request

FIGURE 1 Instance-pooling stateless session beans

Java COM

38 APRIL 2000

39APRIL 2000

Java COM

Compuware
NuMega

www.compuware.com

Java COM

40 APRIL 2000

ommend stateless business compo-
nents over stateful components in a
clustered, 24/7 environment.

There’s Always a Downside
There are a few downsides to building

a distributed application on the founda-
tion of stateless session beans. Typically,
there’s a need to hold conversational
state across method invocations, espe-
cially in today’s distributed applications,
which may hold session data in an
HttpSession, a stateful session bean, a
singleton RMI server, a servlet or JNDI, to
name a few possibilities. State must be
maintained either in the client and
passed everywhere it may be referenced,
or in a persistent store and retrieved on
an as-needed basis. Understanding how
best to handle state between calls when
using stateless session beans can absorb
a significant amount of time in the design
phases of your application.

The programming model of stateless
components isn’t appealing to object-
oriented fanatics, who’d rather maintain
references to objects that are locally
accessible everywhere the objects are
passed. This approach was fine in the
client/server world, where the majority
of processing occurred in a single exe-
cutable. In distributed systems, howev-

er, it’s critical to keep the amount of
information you’re passing between
components to a minimum. Likewise,
it’s critical to keep the number of distrib-
uted references to other components to
a minimum. Now take into account the
design considerations necessary to sup-
port a stateless server architecture and
you’re looking at a tough paradigm shift
for true OO practitioners!

Another restriction I’ve seen throw a
wrench into many designs is the inabili-
ty for stateless session beans to partake
in a transaction beyond a method call.
While these beans are transaction
aware, the transaction participation for
the session bean begins with the
method invocation and ends with the
return of the method. Depending on
when the transaction is eventually com-
mitted or rolled back, this bean has no
option to synchronize with the results.
For instance, stateless session beans
can’t implement the SessionSynchro-
nization interface, which allows a state-
ful session bean to receive notification
of a coordinated transaction’s results.
Since each call to a stateless bean could
be serviced by a different instance, and
the bean’s container can destroy an
instance at the end of its life cycle, the
transaction has no way to reliably com-
municate to a particular instance.

Conclusion
While stateful server architectures

have their niche, many high-volume dis-
tributed systems demand architectures
built around stateless business compo-
nents. These beans, available since the
EJB specification 1.0, are capable of
meeting this demand. They offer you the
ability to build declarative, server-side
components in Java that can scale to
meet the needs of your enterprise appli-
cation.

Microsoft has bet the farm on
stateless components, believing en-
terprise-wide scalability can be met
by taking advantage of features such
as instance pooling, connection pool-
ing and server clustering. Thankfully,
the architects behind the EJB specifi-
cation have included stateless session
bean support in their design as well. If
I had a farm to bet, I’m sure I’d gamble
on building my high-volume, 24/7
application on these beans and win
big!

For more information on compar-
isons of MTS versus EJB, check out Sun’s
portal to comparison documents at
web2.java.sun.com/products/ejb/ejb-
vscom.html.

AUTHOR BIO
Jason Westra is the

CTO of Verge
Technologies Group, Inc.

(www.vergecorp.com).
Verge is a Boulder,

Colorado, based firm
specializing in e-business
solutions with Enterprise

JavaBeans. jwestra@vergecorp.com

Geek
Cruises

p/u
www.geekcruises.com

Develop-
mentor

p/u
www.develop.com

41APRIL 2000

Java COM

Persistence
www.persistence.com

Java COM

42 APRIL 2000

A s a consultant, developer and database administrator, I’ve

often been asked to provide coding guidelines and tuning assistance for

Java code that utilizes JDBC. Over time, I’ve been introduced to or devel-

oped standard coding practices that make JDBC code faster and less error-

prone, and easier to read, understand and use. This article documents

some of the more important “best practices” for using JDBC libraries to

perform database access. As most of my clients are using Oracle database

technologies, I’ve included several practices that are Oracle-specific.

For the purposes of this article the goals of best practices for JDBC
programming are maintainability, portability and performance.
• Maintainability refers to the ease with which developers can under-

stand, debug and modify JDBC code that they didn’t write.
• Portability refers to the ease with which JDBC code can be used with

multiple databases. It turns out that JDBC doesn’t make database pro-
gramming as platform independent as I’d like. In addition, I consider
portability a noble goal even if you have no current plans to support
multiple databases. Who knows how long your code will be around
and what kinds of changes will have to be made to it?

• Performance refers to optimizing the speed and/or memory needed to
run JDBC code.

While I’ve labeled my recommendations best practices, these recom-
mendations change as technology changes and as I discover even better
coding practices. In addition, I’m always annoyed by articles that make
recommendations and then don’t explain the rationale for making them.
I’ll try not to make that mistake here.

Best Practices for JDBC Programming
The most common recommendations I make to Java programmers

using JDBC are the following (discussed individually later):
• Use host variables for literals – avoid hard-coding them (Oracle spe-

cific).
• Always close statements, prepared statements and connections.
• Consolidate formation of SQL statement strings.
• Use the delegate model for database connection.
• Use Date, Time and Timestamp objects as host variables for temporal

fields (avoid using strings).
• Limit use of column functions.
• Always specify a column list with an select statement (avoid “select *”).
• Always specify a column list with an insert statement.

USE HOST VARIABLES FOR LITERALS IN SQL STATEMENTS (ORACLE SPECIFIC)
I recommend that developers use host variables in SQL statements

instead of hard-coding literals in SQL strings. As a convenience, many
developers embed literals in SQL statements instead. I’ve provided an
example of embedding literals in the following code. While the perfor-
mance benefits of using host variables greatly improve Oracle perfor-
mance, it won’t hurt performance for other database platforms that I’m
aware of. Note that this example places a user ID directly in the SQL
statement. (As an aside, note that this example uses the “+” operator for
string concatenation. While this is convenient, using StringBuffers and
the StringBuffer.append() method is a faster way to concatenate strings.)

Best Practices for
JDBC Programming
Best Practices for

JDBC Programming
HOW TO FURTHER THE GOALS OF BEST PRACTICES

BY IMPROVING THE MAINTAINABILITY AND

GENERAL QUALITY OF CODE WITHIN AN APPLICATION

WRITTEN BY DEREK C.ASHMORE

J D J F E A T U R E

43APRIL 2000

Java COM

Career Central
www.careercentral.com

Statement stmt;

ResultSet rst;

Connection dbconnection;

...

stmt = dbconnection.createStatement();

rst = stmt.executeQuery("select count(*) from portfolio_info where

USER_ID = " + userID);

if(rst.next()){

count = rst.getInt(1);

}

To get the benefit of Oracle’s optimizations, we need to use Prepared-
Statements instead of statements for SQL that will be executed multiple
times. Furthermore, we need to use host variables instead of literals for
literals that will change between executions. In the code above the SQL
statement for User id 1 will be different than for User Id 2 (“where
USER_ID = 1” is different from “where USER_ID = 2”). A better way to
approach this SQL statement is the following:

ResultSet rst;

PreparedStatement pstmt;

Connection dbconnection;

...

pstmt = dbconnection.prepareStatement("select count(*) from portfo-

lio_info where USER_ID = ? ");

pstmt.setDouble(1,userID);

rst = pstmt.executeQuery();

if(rst.next()){

count = rst.getInt(1);

}

In this code, because we’re using host variables instead of literals, the SQL
statement is identical no matter what the qualifying user ID is. Furthermore,
we used a PreparedStatement instead of a statement. So that we can better
understand the source of the performance benefit, let’s walk through how SQL
statements are processed by the Oracle optimizer. When SQL statements are
executed, Oracle will execute (roughly speaking) the following steps:
1. Look up the statement in the shared pool to see if it has already been

parsed or interpreted. If yes, Oracle will go directly to step 4.
2. Parse (or interpret) the statement.
3. Figure out how it will get the data you want; record that information in

a portion of memory called the shared pool.
4. Get your data.

A flowchart of this decision process can be found in Figure 1.

When an Oracle user looks up a SQL statement to see if it’s already
been executed (step 1), he or she attempts a character-by-character
match of the SQL statement. If the user finds a match, he or she can use
the parse information already in the shared pool and doesn’t have to do
steps 2 and 3 above because the work has already been done. If you hard-

code literals in your SQL statements, the probability of finding a match
is very low (“where USER_ID = 1” isn’t the same as “where USER_ID = 2”).
This means that Oracle will have to reparse the second code example for
each portfolio selected. Had the code used host variables, that statement
(which would look something like “where USER_ID = :1” in the shared
pool) would have been parsed once and only once.

I’ve experienced anywhere from a 5% to a 25% performance increase
by writing SQL statements that are reusable (results vary with transac-
tion volume, number of users, network latency and many other things).
More information on this can be found in the Oracle Tuning manual.
Within this manual look at the “Writing Identical SQL Statements” sub-
heading within the “Tuning the Shared Pool” section.

While this best practice is Oracle-specific, many database platforms
optimize preparing and reusing similar SQL statements. Most database
platforms do this by optimizing reuse of PreparedStatement objects. Some
databases, such as Cloudscape, optionally will store prepared statements in
the database so they can be reused and shared by many users. Following this
practice won’t hurt performance with any database platform I’m aware of.

ALWAYS CLOSE STATEMENTS, PREPARED STATEMENTS AND CONNECTIONS
Many databases allocate resources to servicing statements, prepared

statements and connections. Many database platforms continue to allo-
cate those resources for a period of time if these objects aren’t closed
after use. With Oracle databases it’s possible to get a “max cursors
exceeded” error message when you don’t close statements or prepared
statements. In addition, with Oracle databases, the connections stay
around on the server. This practice improves time and resources spent
on maintenance to keep errors from happening.

An example can be found in Listing 1. Note that I use a “finally” block
to close the PreparedStatement. I don’t close the connection in the
example method as it is used elsewhere in the application. Note also that
I call a utility to close the PreparedStatement for me. The code for this
utility can be found in Listing 2. I use a utility to do the close so I don’t
have to replicate the exception-catching code everywhere.

Consolidate Formation of SQL Statement Strings
As a database administrator, a substantial portion of my time is

spent reading the code of others and suggesting ways to improve perfor-
mance. As you might expect, looking at the SQL statements being issued
is of particular interest to me. It’s hard to follow SQL statements that are
constructed by string manipulation scattered over several methods.
Developers who maintain this kind of code must have the same prob-
lem. It greatly enhances readability if you consolidate the logic that
forms the SQL statement in one place.

Listing 2 is a good example of this point. The string manipulation to
form the SQL statement is located in one place, and the SQL statement
logic is in a separate static block instead of within the method itself. This
is done to reduce the number of times this string concatenation hap-
pens. Also note that StringBuffers are used for the string manipulation,
not Strings. StringBuffers are more efficient at string concatenation than
Strings are. In a project I recently completed the development team
adopted this convention of consolidating SQL statements in static
blocks directly above the method in which they were used. We found this
practice quite readable and maintainable.

USE DELEGATE MODEL FOR DATABASE CONNECTION
I recently had the task of making the same application runnable on

Oracle 8i, Cloudscape and Oracle Lite with as few modifications to exist-
ing code as possible. The development team wanted to avoid making
JDBC-related classes platform-aware. In addition, the team wanted to
take advantage of some platform-specific features, such as array pro-
cessing and write batching in Oracle 8i, in special cases.

I was able to port the application to multiple environments largely
through manipulation of one class responsible for managing our data-
base connection. We had the foresight to create a delegate class for the
java.sql.connection that manages needed connection functions and

Has a
user already

 issued this SQL
statement?

NO

YES

Use access
path info to
get data

Use access
path info to

get data
Use access
path info to
get data

Determine
access path
and record

the access path
for future use

Use access
path info to
get data

Interpret
this SQL

statement

FIGURE 1 Decision process flowchart

Java COM

44 APRIL 2000

45APRIL 2000

Java COM

Elixir
www.elixir.com

allows us to take advantage of platform-specific performance-tuning
enhancements. All of our code used the delegate, not a native JDBC con-
nection, as illustrated in Figure 2. While the specific class used for the
project is proprietary, I’ve created another delegate, dvt.util.db.Connec-
tion, that illustrates the concept for the purposes of this article. The
source for this delegate can be found in Listing 3.

Note that dvt.util.db.Connection determines that the database platform is
being used. If the platform is Oracle 8i, I establish array processing by setting
the default row prefetch size (available with Oracle database connections) to
improve the performance of our “select” statements. I also establish write
batching to improve performance of update, insert and delete statements.

Since I consolidate the platform-specific code in my connection object
delegate, classes that use my connection delegate don’t need to be plat-
form specific. In case they do, however, developers can use getPlatform()
to get information about the database platform being used. Furthermore,
I can add support for additional database platforms (e.g., Cloudscape and
Sybase) largely by changing this class. The connection delegate won’t solve
all portability issues, but it will solve a good percentage of them.

I recommend using a connection delegate even for projects that cur-
rent supporting only one database platform. As we saw from recent Y2K
efforts, you may find that your code is used for longer than you think,
and used in other applications down the road.

USE DATE, TIME AND TIMESTAMP OBJECTS AS HOST VARIABLES FOR TEMPORAL FIELDS
(AVOID USING STRINGS)

For convenience, I’ve seen many developers use strings as host vari-
ables to represent dates, times and timestamps. I think they consider
Java.sql.Date, Time and Timestamp awkward. I agree with from a coding
perspective. Unfortunately, using strings as host variables for temporal
fields can affect data access performance.

The following code snippet contains a SQL statement meant for an
Oracle platform that uses a string variable to represent a DATE field.
Without an understanding of how the database optimizers work, this
appears to be an acceptable coding technique. For the small inconve-
nience of using a “to_char” function in the SQL statement, we avoid the
Java work of converting a java.sql.Date or Timestamp into a more easily
displayable data type elsewhere in the code.

Select sum(sale_price)

From order_sales

Where to_char(sale_dt,’YYYY-MM-DD’) >= ?

Unfortunately, Oracle and most database optimizers can’t use an
index to speed up performance of the query in this snippet. Developers
will have to read all rows of the order_sales table and convert the sale_dt
of all rows to a string before they can do the comparison to see which
rows satisfy the where clause of the query.

If we rewrite the query in the snippet to use a java.sql.Timestamp host-
variable, Oracle (and most of the common database platforms) will use an
index and significantly improve performance in most cases, as follows:

Select sum(sale_price)

From order_sales

Where sale_dt >= ?

For applications that use Oracle exclusively, I recommend using
java.sql.Timestamp exclusively. Oracle’s DATE data type actually contains
time information (hours, minutes, seconds) as well as date information.
Most other database platforms would call this type of field a TIMESTAMP.
Oracle has no direct counterpart for a DATE (which has year, month and
day only) and TIME data type offered by other platforms.

LIMIT USE OF COLUMN FUNCTIONS
I generally recommend that developers limit use of column functions

to the select lists of select statements. Moreover, I tend to stick to aggre-
gate functions (e.g., count, sum, average) needed for select statements
that use a “group by” clause. I make this recommendation for two rea-
sons: performance and portability. Limiting function use to select lists
(and keeping it out of where clauses) means that the use of a function
won’t block the use of an index. In the same way that the use of the
“to_char” function prohibited the database from using an index in the
earlier code snippet, column functions in where clauses likely prohibit
the database from using an index.

In addition, many of the operations for which developers use SQL
column functions (data type conversion, value formatting, etc.) are
faster in Java than if the database did them. I’ve had between a 5% and a
20% performance improvement in many applications by opting to avoid
some column functions and implementing the logic in Java instead.
Another way to look at it is that column functions aren’t tunable as we
don’t control the source code. Implementing that logic in Java makes it
code that we can tune if need be.

Moreover, using non-ANSI–standard column functions can also
cause portability problems. There are large differences in which column
functions are implemented by the database vendors. For instance, one of
my favorite Oracle column functions, “decode”, which allows you to
translate one set of values into another, isn’t implemented in many of the
other major database platforms. In general, column function use such as
the use of “decode” has the potential to become a portability issue.

ALWAYS SPECIFY A COLUMN LIST WITH A SELECT STATEMENT (AVOID “SELECT *”)
A common shortcut for developers is to use the “*” in select state-

ments to avoid having to type out a column list. The line below illustrates
this shortcut while the snippet immediate following illustrates the alter-
native where desired columns are explicitly listed.

Select * from customer

Select last_nm, first_nm, address, city, state, customer_nbr from

customer

I recommend that developers explicitly list columns in select state-
ments as illustrated above. The reason is that if the columns in any of the
tables in the select are reordered or new columns are added, the results
obtained with the select-asterisk shortcut will change and the class will
have to be modified. For example, suppose a database administrator
changes the order of the columns and puts column customer_nbr first
(there are valid reasons why a DBA could reorder columns). In addition,
suppose the DBA adds a column called country. The developer who used
the shortcut select * from customer will have to change code. All the off-
set references used in processing the Resultset will change. The develop-
er who explicitly listed all columns can be oblivious to the change
because the code will still work.

Explicitly listing columns in a select statement is a best practice
because it prevents the need for maintenance in some cases.

FIGURE 2 Code using the delegate

Java COM

46 APRIL 2000

47APRIL 2000

Java COM

SlangSoft
www.slangsoft.com

Java COM

ALWAYS SPECIFY A COLUMN LIST WITH AN INSERT STATEMENT
A common shortcut for developers is to omit the column list in insert

statements to avoid having to type out a column list. By default, the col-
umn order is the same as physically defined in the table. The first snip-
pet below illustrates this shortcut while the next one illustrates the alter-
native where desired columns are explicitly listed.

Insert into customer

Values (‘Ashmore’,’Derek’,’3023 N. Clark’,’Chicago’,’IL’, 555555)

Insert into customer

(last_nm, first_nm, address, city, state, customer_nbr)

Values (?,?,?,?,?,?)

I recommend that developers explicitly list columns in insert statements
as illustrated in the second snippet above. The reason is the same as why we
should explicitly list columns in select statements. If the columns in any of
the tables in the select are reordered or new columns are added, the insert
could generate an exception and insert in class will have to be modified. For
example, suppose a DBA, as in the previous example, changes the order of
the columns, puts column customer_nbr first and adds a column called
country. The developer who used the first shortcut above will have to change
code. The developer who explicitly listed all columns may be oblivious to the
change because the code may still work. In addition, note that the version in
second snippet above uses host variables so the same PreparedStatement
can be used for all inserts if there are multiple inserts.

Explicitly listing columns in an insert statement is a best practice
because it prevents the need for maintenance in many cases.

Recommendations for Stored Procedure Usage
Stored procedure programming languages (such as Oracle’s PL/SQL)

are handy and in many cases very convenient. I use them often for utility
scripts and data-cleansing activities. I’m often asked about recommenda-
tions for stored procedure use in applications, but as their capabilities dif-
fer greatly among the major database platforms, I can’t give platform-inde-
pendent advice on the subject. I can, however, provide some thoughts on
stored procedure use as it relates to portability and performance.

As these languages differ so greatly, their use within applications
causes portability issues. For instance, some stored procedure languages
allow procedures to return result sets, some do not. Some stored proce-
dure languages allow temporary tables (usable within the current ses-
sion only), some do not. We could find many more differences, but I
think the point is clear. If portability is a concern, I recommend avoiding
use of stored procedures except for database triggers.

Performance is a tougher issue because it differs radically between data-
base vendors. Stored procedure use for some database platforms enhances
performance; in others it degrades it. For Oracle platforms I advocate stored
procedures within Java applications for database triggers only. For most other
situations their use provides no benefit. If you want a more detailed discussion
on when and how to use stored procedures, functions and packages within
Oracle databases, see my article in JDJ December 1999 (Vol. 4, issue 12).

Summary
This article has discussed several ways to make JDBC code more perfor-

mance-, maintenance- and portability-friendly on an individual basis. I always
recommend team code reviews and documented coding standards as ways to
develop more best practices and consistently apply existing practices. Further-
more, team code reviews help further the goals of best practices by improving
the maintainability and general quality of code within an application.

AUTHOR BIO
Derek Ashmore is the senior vice president of development for Delta Vortex Technologies, a Chicago-based consulting
firm. He has designed, implemented and managed Oracle-based projects of many different types and sizes.

dashmore@dvt.comGET
 YO

UR
 OW

N!
SUB

SCR
IBE

 NO
W!

or

Call 1-800-513-7111
Subscribe to the Finest Technical

Journals in the Industry!

Go Online and
Subscribe

Today!
www.SYS-CON.com

49APRIL 2000

Java COM

TideStone
www.tidestone.com

Java COM

50 APRIL 2000

private static Connection dbConnection;
private static HashMap companyMap = new HashMap();
private static StringBuffer tempBuffer;

private static final String insertPortfolioCompaniesSQL;
static{

tempBuffer = new StringBuffer("INSERT INTO Portfolio_Com-
panies ");
tempBuffer.append("(portfolio_id,business_entity_id,
nbr_shares_held) ");
tempBuffer.append("VALUES(?,?,?)");
insertPortfolioCompaniesSQL = tempBuffer.toString();

}
private void insertPortfolioCompanies() throws SQLException

{
PreparedStatement pstmt = null;
try {

pstmt = dbConnection.prepareStatement(insertPortfolio-
CompaniesSQL);
if(companyMap.isEmpty()){

Collection companyCollection = companyMap.values();
for(Iterator i = companyCollection.iterator(); i.has-
Next();){

PortfolioConstituent pc =
(PortfolioConstituent)i.next();
pstmt.setDouble(1,pc.getPortfolioID());
pstmt.setDouble(2,pc.getCompanyID());
pstmt.setDouble(3,pc.getShares());

pstmt.execute();
}
pstmt.close();
dbConnection.commit();

}
} finally { JDBCUtilities.close(pstmt); }

}

static public void close (ResultSet rs) {
try { if (rs!=null) rs.close(); } catch (Exception e) {}
}

// Works for PreparedStatement also since it extends
// Statement.
static public void close (Statement stmt) {

try { if (stmt!=null) stmt.close(); } catch (Exception e) {}
}

static public void close (java.sql.Connection conn) {
try { if (conn!=null) conn.close(); } catch (Exception e) {}
}

static public void close (dvt.util.db.Connection conn) {
try { if (conn!=null) conn.close(); } catch (Exception e) {}
}

package dvt.util.db;

import java.lang.*;
import java.sql.*;
import oracle.jdbc.driver.*;

/**
* Connection represents a generic database connection.
*
* @author Derek C. Ashmore
* @version 1.0
*
*/

public class Connection {

public static final String ORACLE_8I = "8I";
public static final String CLOUDSCAPE = "CLOUDSCAPE";
public static final String ORACLE_LITE = "ORACLE_LITE";
public static final String GENERIC = "GENERIC";

public static final String CLOUDSCAPE_DRIVER =
"COM.cloudscape.core.JDBCDriver";
public static final String ORACLE_LITE_DRIVER =
"oracle.lite.poljdbc.POLJDBCDriver";
public static final String ORACLE_8I_DRIVER =
"oracle.jdbc.driver.OracleDriver";

/**
* Registers the database driver and obtains the speci-
* fied database connection.
*
* @param JDBCDriver
* @param connectString
* @param localUserId
* @param localPassword
*/

public Connection(String jdbcDriverName,
String connectString,
String localUserId,
String localPassword) {

setUserId(localUserId);
setPassword(localPassword);

if (jdbcDriverName.equals(ORACLE_LITE_DRIVER))
platform = ORACLE_LITE;

else if (jdbcDriverName.equals(CLOUDSCAPE_DRIVER))
platform = CLOUDSCAPE;

else if (jdbcDriverName.equals(ORACLE_8i_DRIVER))
platform = ORACLE_8i;

else platform = GENERIC;

registerDBDriver(jdbcDriverName);
currentConnection = getConnection(connectString, con-
nectString);

}

/**
* Registers the database drivers.
*/

private void registerDBDriver(String jdbcDriverName) {
try {

Class.forName(jdbcDriverName);
this.setDriverRegistered(true);

}
catch (Exception DBError) {

System.out.println(DBError.getMessage());
DBError.printStackTrace();

}
}

/**
* Prepares a SQL statement.
*
* @param localSQLString
* @exception java.sql.SQLException
*/

public PreparedStatement prepareStatement(String local-
SQLString) throws SQLException {

return currentConnection.prepareStatement(localSQL-
String);

}

/**
* Returns the current Oracle database connection.
*/

private java.sql.Connection getConnection(String jdbc-
DriverName, String connectString) {

if (isConnected()) return currentConnection;
if (! isDriverRegistered()) registerDBDriver(jdbc
DriverName);

try {
currentConnection = DriverManager.getConnec-
tion(connectString,

userId, password);

Listing 3

Listing 2

Listing 1

51APRIL 2000

Java COM

4th Pass
www.4thpass.com

Java COM

52 APRIL 2000

if (platform.equals(ORACLE_8I)) {
OracleConnection oConnect = (OracleConnec-
tion) currentConnection;
oConnect.setDefaultRowPrefetch(default
PrefetchSize);
oConnect.setDefaultExecuteBatch(default
WriteBatchSize);
Statement alterDateFormat = currentConnec-
tion.createStatement();
alterDateFormat.execute("alter session set
NLS_DATE_FORMAT = 'YYYYMMDDHHMISS'");
}

currentConnection.setAutoCommit(defaultAutoCom-
mitSetting);

this.setConnected(true);
}
catch (SQLException DBError) {

System.out.println(DBError.getMessage());
DBError.printStackTrace();

}
return currentConnection;

}

public java.sql.Connection getConnection() { return
currentConnection; }

/**
* Provides the user id associated with the current
database connection.
*/

public String getUserId() {
return userId;

}

/**
* Sets the user id used to obtain the database connection.
*
* @param localUserId
*/

private void setUserId(String localUserId) {
userId = localUserId;

}

/**
* Provides the password used to obtain the database

connection.
*/

public String getPassword() {
return password;

}

/**
* Sets the password used to obtain the database connection.
*
* @param localPassword
*/

private void setPassword(String localPassword) {
password = localPassword;

}

/**
* Provides information as to whether or not database
* driver registration has occurred.
*/

private boolean isDriverRegistered() {
return driverRegistered;

}

/**
* Issues a database commit to save all pending changes
* to the database.
*/

public void commit() throws SQLException {

currentConnection.commit();
}

/**
* Issues a database rollback to abort all pending
* changes to the database.
*/

public void rollback() throws SQLException {
currentConnection.rollback();

}

/**
* Issues a database disconnect.
*/

public void close() throws SQLException {
currentConnection.close();

}

/**
* Issues a database disconnect and closes a given
* statement
* (provided for programatic convenience -- doesn't logically
* belong here).
*
* @param PreparedStatement
*/

public void close(PreparedStatement preparedStatement)
throws SQLException {

try {
preparedStatement.close();
}

catch (SQLException e) {
e.printStackTrace();
}

this.close();
}

/**
* Issues a database disconnect and closes a given
* statement and result set (provided for programatic
* convenience -- doesn't logically belong here).
*
* @param PreparedStatement
* @param ResultSet
*/

public void close(PreparedStatement preparedStatement,
ResultSet resultSet) throws SQLException {

try {
resultSet.close();
}

catch (SQLException e) {
e.printStackTrace();
}

this.close(preparedStatement);
}

/**
* Records registration status of database drivers.
*
* @param LocalDriverRegistered
*/

private void setDriverRegistered(boolean LocalDriverReg-
istered) {

driverRegistered = LocalDriverRegistered;
}

/**
* Provides information about current database connection
* status.
*/

public boolean isConnected() {
return connected;

}

53APRIL 2000

Java COM

Evergreen
www.evergreen.com

Java COM

54 APRIL 2000

/**
* Sets database connection status information.
*
* @param LocalConnected
*/

private void setConnected(boolean LocalConnected) {
connected = LocalConnected;

}

/**
* Sets the array size used for select statements.
*
* @param arraySize
*/

public void setPrefetchSize(int arraySize) throws SQLEx-
ception {

if (platform.equals(ORACLE_8i)) {
OracleConnection oConnection = (OracleConnection)
currentConnection;
oConnection.setDefaultRowPrefetch(arraySize);
}

}

/**
* Provides the array size used for select statements.
*
*/

public int getPrefetchSize() throws SQLException {
if (platform.equals(ORACLE_8i)) {

OracleConnection oConnection = (OracleConnection)
currentConnection;
return oConnection.getDefaultRowPrefetch();
}

else return -1;
}

/**
* Sets the array size used for update, insert, and
* delete statements.
*
* @param arraySize
*/

public void setWriteBatchSize(int arraySize) throws
SQLException {

if (platform.equals(ORACLE_8i)) {
OracleConnection oConnection = (OracleConnection)
currentConnection;
oConnection.setDefaultExecuteBatch(arraySize);
}

}

/**
* Provides the array size used for update, insert, and
* delete statements.
*
*/

public int getWriteBatchSize() throws SQLException {
if (platform.equals(ORACLE_8i)) {

OracleConnection oConnection = (OracleConnection)
currentConnection;
return oConnection.getDefaultExecuteBatch();
}

else return -1;
}

/**
* Sets the AutoCommit specification for the connection.
* Set to true to
* have commits automatically issued. Set to false to
* handle commits
* and rollbacks manually.
*
* @param autoCommitInd
*/

public void setAutoCommitSetting(boolean autoCommitInd)
throws SQLException {

currentConnection.setAutoCommit(autoCommitInd);
}

/**
* Provides the AutoCommit specification for the connec-
* tion. True means that commits are automatically
* issued. False means that commits and rollbacks are
* handled manually.
*
*/

public boolean getAutoCommitSetting() throws SQLException {
return currentConnection.getAutoCommit();

}

/**
* Provides database platform used for the connection.
*/

public String getPlatform() { return platform; }

/**
* User ID used to obtain database connection.
*/

private String userId;

/**
* Password used to obtain database connection.
*/

private String password;

/**
* Prefetch size (select array processing batch size)
* for database connection.
*/

private int defaultPrefetchSize = 100;

/**
* Default update Batch size (number of write DML state
* ments to queue) for database connection.
*/

private int defaultWriteBatchSize = 20;

/**
* Auto Commit mode for database connection.
*/

private boolean defaultAutoCommitSetting = false;

/**
* Indicates database driver registration status.
*/

private boolean driverRegistered;

/**
* Indicates last known database connection status.
*/

private boolean connected;

/**
* Contains JDBC connection information.
*/

private java.sql.Connection currentConnection = null;

/**
* Contains JDBC connection information.
*/

private String platform = null;
}

55APRIL 2000

Java COM

Modis
www.modis.com

WRITTEN BY
TODD SCALLAN

Tips on how to ease the pain of migrating to a new middleware implementation

M
any three-tier applications built using various middleware
products ultimately fail in production due to a lack of scala-
bility,flexibility or reliability.This can trigger a need to migrate
an application from one middleware product to another. In
this article we’ll discuss a process for porting servers between
CORBA and EJB middleware implementations.

C O R B A C O R N E R

Object request brokers and applica-
tion servers are popular middleware
technologies you can readily find in the
middle tier of distributed applications.
These technologies impact the reliabili-
ty and scalability of the applications
they support since middleware intro-
duces a higher degree of sophistication –
and therefore greater complexity.

The arrival of distributed object
technology into the mainstream of soft-
ware development has led to the emer-
gence of CORBA and RMI as standard
object communication mechanisms.
Moreover, thanks to the growing num-
ber of e-business applications being
developed for the Web, application
servers have gained recent prominence
within software projects

Cross-Server Interchangeability
As a way to address component

interoperability and interchangeability
across servers, the Enterprise JavaBeans
specification defines an execution and
services framework for server-side Java
components. EJB relies on the underly-
ing communication mechanism – typi-

cally CORBA or RMI – for exposing a
component’s public interface. Figure 1
illustrates how EJB components can
interoperate with CORBA and Java
objects.

Why Migrate?
The primary advantages of technolo-

gies like CORBA, RMI and EJB are inter-
operability and portability. As the use of
these middleware standards continues
to grow, requirements for functional
richness and scalability help drive deci-
sions about which implementation to
choose. Changes in business and tech-
nical requirements, as well as vendor
offerings, often result in the need to
migrate between ORBs or application
servers. More to the point, applications
built using various middleware products
all too often fail due to a lack of scalabil-
ity, flexibility or reliability. When faced
with this situation, the best course of
action may be to migrate your applica-
tion software to an alternative middle-
ware product.

Migration usually involves porting
your application from one vendor’s mid-

dleware implementation to another, or
even between implementations provid-
ed by the same vendor. Some vendors
offer different application servers
depending on whether you require
robust EJB support for faster develop-
ment versus CORBA underpinnings for
enterprise scalability. In any event,
migration raises a number of potential
issues for the application components
being ported and possibly also raises
interoperability issues for components
remaining on dissimilar implementa-
tions. (We’ll deal with some of these
issues shortly.)

Migration Process
Now let’s explore a process for

migrating applications between stan-
dard middleware implementations. The
aims of this process are to capture base-
line test cases and performance metrics,
then port the application code – and
finally to validate that the port was suc-
cessful. To quantify the success of a
migration effort it’s essential to capture
test cases and metrics methodically – for
example, has the migration indeed
resulted in increased scalability? Test
automation helps streamline this
process, providing a cost-effective way
to successfully complete a migration
effort and quantify the results.

The migration of an application
involves more than just porting source
code – it entails careful planning, analy-
sis and validation of results. While
CORBA and EJB define interoperability
and interchangeability standards, they
don’t prescribe how your middleware
provider may have implemented the
underlying infrastructure or how you
should architect your application com-
ponents. So you might very well find
that migration involves rearchitecting

Java COM

56 APRIL 2000

IIOP

CORBA
Server

EJB
Application

Server

IIOP

CORBA Client
(Java, C++,...)

RM
I over IIOP

RMI

Java
Client

FIGURE 1 Java programs can communicate with EJBs using either RMI or RMI over
IIOP – the CORBA wire-level protocol. CORBA clients can be implement-
ed in any programming language and use IIOP to talk to EJB
or CORBA servers.

Improving Reliability and Scalability of Middle-Tier Servers

57APRIL 2000

Java COM

New Atlanta
www.newatlanta.com

portions of your application to compen-
sate for differences between the current
middleware implementation and the
new one.

The migration process consists of
three phases: preparation, porting and
validation. These phases, illustrated in
Figure 2, are described in the next sec-
tions.

Preparation Phase
In preparation for a port, you must

first create behavioral test cases and
capture performance metrics. These
tests and metrics should be set in the
context of specific goals and targets for
the ported application. For example, a
goal may be to introduce automatic load
balancing. Or a target may be to improve
an application’s performance by an
order of magnitude.

The steps for the preparation phase
are:
1. Define goals and targets.
2. Create behavioral test cases.
3. Capture baseline performance metrics.
4. Analyze the application architecture

and identify potential issues.

1. DEFINE GOALS AND TARGETS.
First we need to know where we’re

going. Typically, the major reason for
migrating is to improve the reliability of
an application that’s targeted for pro-
duction use. Increasingly such applica-
tions are e-business engines that will

experience significant demands in terms
of client requests, resource availability,
and so on. By defining concrete goals
and targets it should be possible to align
your application’s usage requirements
with the capabilities of the target mid-
dleware implementation. For instance,
does the middleware provide automatic
failover or will you have to build this into
your application?

2. CREATE BEHAVIORAL TEST CASES.
Test cases must be created so that

the behavior of the ported application

can be validated. Since middle-tier
server applications can consist of multi-
ple processes that interact through
published APIs, this isn’t a traditional
regression testing exercise. Rather, test
cases must be defined for each of an
application’s components (see Figure
3). The challenge becomes how to
accomplish this without having to write
static test drivers for each component’s
API.

The following observations can be
made about a middle-tier server:
• Public interfaces are typically speci-

fied in IDL or Java.
• Objects can be accessed dynamically

via standard mechanisms such as
CORBA’s DII or Java’s reflection API.

• A client program can invoke methods
and manipulate attributes of server
objects irrespective of the implemen-
tation language and physical location
of the server.

Test cases are most effectively creat-
ed using an automated functional test-
ing tool that can interact with object-
based servers. (Segue’s SilkPilot is such a
tool for CORBA and EJB servers.) The
general approach is to exploit dynamic
invocation facilities, allowing you to
connect to one or more servers, view
information about live objects within
the servers, invoke methods with para-
meters, and view or modify attributes.

Testing should be done within the
context of the application’s usage
model. A banking application, for exam-
ple, requires an account to be created
before funds can be deposited. When an
interactive test cycle is completed, a cor-
responding test case should be generat-
ed and saved. Test cases are run later
during the validation phase of the

C O R B A C O R N E R

Java COM

58 APRIL 2000

Validation Phase
1. Assure behavior
2. Measure performance

Porting PhasePreparation Phase
1. Define goals & targets
2. Create test cases
3. Capture baseline metrics
4. Analyze architecture
 & identify issues

FIGURE 2 Migration process

API-Level
Functional Testing

Behavioral
Tests

Interface
Descriptions

Middleware

Server

FIGURE 3 Behavioral test cases are created by manually interacting with the
server through its public interface and the underlying middleware
implementation.

Application Client
or Behavioral Test

Load
Tests

Middleware

Server

Protocol-Level
Load Testing

Recorded
Traffic

FIGURE 4 Performance metrics can be obtained by recording message traffic for a
representative set of interactions with the server, then creating and
executing load tests based on expected usage models.

59APRIL 2000

Java COM

Intuitive
www.intuitive.com

C O R B A C O R N E R

Java COM

60 APRIL 2000

migration effort to ensure that the newly
ported application components are
functioning properly.

3. CAPTURE BASELINE PERFORMANCE METRICS.
You need to quantify the perfor-

mance of the original application for
comparative analysis during the valida-
tion phase. Measurement of an applica-
tion’s performance involves simulating
usage models under various loads. It’s
highly advisable to use an automated
load-testing tool – such as Segue’s
SilkPerformer – to accurately simulate
message traffic and measure the capaci-
ty and scalability of your server applica-
tions (see Figure 4).

The first step in capturing perfor-
mance metrics is to record message traf-
fic for a typical set of interactions with
the server. You can intercept and record
IIOP communication used by ORBs and
highly scalable application servers, for
instance. Then you can create a load test
by scaling up the recorded traffic to rep-
resent the anticipated usage volume,
such as a thousand banking clients mak-
ing deposits rather than just the one
representative case used to generate the
initial traffic.

Data values captured within the
recorded traffic should be replaced
with randomized values to create a
realistic simulation. Each of the thou-
sand simulated banking clients would
thus have a unique account number
and deposit amount, for instance.
Workloads can then be defined in terms
of machines in the network generating
the workload, number of concurrent
clients executed, transaction frequen-
cies and duration of the simulation.
Scalability measurements become
extremely useful when obtained under
various workloads, such as starting a
simulation with 20 clients and then
adding 10 more every 30 seconds up to
a thousand concurrent clients. Perfor-
mance measurements include the
throughput of an application compo-
nent and the response time as per-
ceived by client applications.

4. ANALYZE THE APPLICATION ARCHITECTURE AND
IDENTIFY POTENTIAL ISSUES.
The architecture of the existing appli-

cation must be analyzed and reconciled
against the goals and targets for the
application’s performance when migrat-
ed to the new middleware. Decisions in
the initial architecture were often influ-
enced by limitations of the middleware
originally used. So the migration may
include some rearchitecting of the appli-
cation to remove certain design conces-
sions or workarounds that aren’t neces-
sary any longer.

Issues may also arise from the
absence of particular features in the tar-
get middleware, or differences intro-
duced by an alternate approach to
implementing the underlying infra-
structure; for example, multithreaded
servers versus single-threaded/multi-
process. All potential issues should be
identified as early in the migration
process as possible.

Some specific architectural issues to
consider include:
• How clients connect to a server: For

example, does your middleware
implementation provide an API for
binding directly to an object? Are you
required to use a naming service, fac-
tory or other facility?

• Mechanisms for creating and expos-
ing objects within servers: Are you
required to use either a basic object
adapter (BOA) or portable object
adapter (POA)?

• Object management: What activation
modes are available? How is object
lifecycle managed? Does the middle-
ware implement a dedicated connec-
tion between each client and your
object or does it pool connections?

• Load balancing: Does the middle-
ware implement a transaction-pro-
cessing framework? Does it provide
some other functionality such as
object groups?

• Threading: Can servers be safely
implemented using threads, or does
the middleware require single-
threaded/multiprocess servers?

• Nonstandard features: Does your
application take advantage of vendor-
specific features such as interceptors,
locators, loaders or client-side
caching? Are you using special fea-
tures to accomplish “nonstandard”
tasks like piggybacking extra data
onto a message?

• Fault resilience: Are you depending
on middleware-dependent features
such as activation modes, automatic
connection reestablishment or a
transaction-processing framework?

• Transaction support: Does your
application assume the middleware
will handle transaction starts, com-
mits and rollbacks?

• Process colocation: Are you using spe-
cial features to colocate clients and
servers within a common address
space?

• Callbacks: Do your clients expect call-
backs from your servers? How does
the middleware support this?

Porting Phase
Having completed the preparation

phase, the application source code can

now be ported to the target middleware.
Based on the conclusions drawn from
your analysis during the preparation
phase, it might be necessary to make
changes to source code. This is quite
likely if your migration effort includes
taking advantage of features that are
available only in the new middleware.

The steps for the porting phase are
the same as for any porting effort: mod-
ify source code as necessary, recompile
on the target middleware and platform,
test that the application functions prop-
erly and repeat as required. When port-
ing is completed, it’s time to move on to
the validation phase.

Validation Phase
After the application is operational

on the new middleware, you must vali-
date the achievement of your goals and
targets. The two steps for this phase are:
1. Make sure that the application

behaves properly.
2. Measure the application’s perfor-

mance.

1. MAKE SURE THAT THE APPLICATION BEHAVES PROPERLY.
The test cases created during the

preparation phase can be used to verify
the behavior of the newly ported appli-
cation. This is an API-level regression
test. Each test case should be executed
and the results reviewed to make sure
that the new server components are
responding properly.

2. MEASURE THE APPLICATION’S PERFORMANCE.
The load tests created during the

preparation phase can be rerun to gen-
erate new performance metrics. These
measurements can be compared to the
initial baseline metrics and perfor-
mance targets to provide quantifiable
evidence that the application’s perfor-
mance has indeed improved.

Final Thoughts
Middleware standards like CORBA

and EJB provide a marvelous basis upon
which to design and build three-tier
applications. However, choosing the
right product for the lifetime of an appli-
cation is made difficult – even perhaps
unlikely – by multiple middleware
implementations, each with their own
unique design approaches, vendor-spe-
cific features and inevitable limitations.
If improving the reliability of your
CORBA or EJB application requires
migrating to a new middleware imple-
mentation, the process outlined in this
article should help ease the pain.

AUTHOR BIO
Todd Scallan is the
director of project

management for Segue
Software’s distributed

computing products. He
holds a BS in electrical

engineering from Lehigh
University and an MS in

computer engineering
from Syracuse University. tscallan@segue.com

61APRIL 2000

Java COM

Fiorano
www.fiorano.com

Java COM

62 APRIL 2000

Sterling
www.sterlings

Software
software.com

63APRIL 2000

Java COM

Desktop applications, handheld devices,
telephones – Internet applications can be
delivered from a variety of sources and appli-
ances. They can originate in one country and
be delivered to another in the blink of an eye.
As a result, no matter whether you’re con-
structing an informational Web site or an e-
commerce solution, you won’t be able to
service all possible users unless you can
“speak their language.”

The folks at Jerusalem-based Slangsoft,
one of a crop of high-technology companies
to emerge from Israel’s version of Silicon
Valley, consider it their mission to assist
developers with the process of harnessing
their applications to support the needs of
international communities of users. Slang-
soft was kind enough to let me take a look
at the release candidate for the newest ver-
sion of their LingoGUI toolkit for deliver-
ing multilingual Web applications.

LingoGUI Basics
LingoGUI is a development package

that consists of a series of lightweight
Java graphical-user-interface compo-
nents, associated fonts and virtual key-
boards for 42 different national lan-
guages. (LingoGUI provides a frame-
work for managing international lan-
guages, but it doesn’t actually translate
text for you.) The LingoGUI toolkit
comes in two different formats, a regu-
lar edition (Java class files) and a Lin-
goGUI beans edition that can be used
with any of the popular Java Interactive
Development Environments such as
Oracle JDeveloper and VisualCafé. Lin-
goGUI is meant as a replacement UI for
a set of the most popular AWT widgets
as listed in Table 1.

Slangsoft provides the necessary
fonts and virtual keyboards so you can
use LingoGUI no matter what platform
the application will run on. You can
deliver your program as a Java applica-
tion, in which case the fonts and virtual
keyboards can be stored locally, or as a
Java applet – in which case the fonts and
keyboards can be stored on your Web
server and delivered over the Internet.
(You can access Slangsoft’s demo applica-
tions over the Internet from within your
browser and see it for yourself.)

Working with LingoGUI
I downloaded the release 1.1 candidate

from the Slangsoft Web site and installed the
software quickly and easily. I got started by
working through the sample HTML pages in
the examples subdirectory. These pages have
links to working Java applets, which gave me a
basic understanding of how to work with the
LingoGUI. The main demo application shows
off all the major components of the product, as
you can see in Figure 1.

This same applet can be accessed from
Slangsoft’s Web site, so you don’t even need to
download the product to get a handle on how it
works. The demo applet doesn’t model a real
application; it’s merely a sample form that
shows off all of the LingoGUI widgets using a
single panel. By setting the language listbox to
“Russian,” I was able to enter a string into the
text field and then use the push button to prop-
agate the text to the other widgets. The Lin-
goGUI widgets work like any other AWT com-
ponent, and you can set the same attributes for
them including bold, italic, colors and image
backgrounds.

Harnessing your applications to support
multiple languages requires more than just
visual widgets; you also need fonts to display
international text and a means to enter text
into fields using a different language. Slangsoft
provides a Unicode font with LingoGUI called
EmlDefault, which supports a range of sizes
from eight to 72 points. Furthermore, the
EmlDefault font supports the standard set of
style options including plain, bold, italic and
underlining. The EmlDefault font is packaged
inside the small LingoGUI JAR files, which
means that it can be downloaded over the Web
without difficulty at application-execution-
time. If you prefer to use your own fonts with
the LingoGUI widgets, you’re free to do so, but
this defeats the purpose of building your appli-
cation with LingoGUI. Should you need to
make use of your own font, Slangsoft has devel-
oped a technique for converting TrueType
fonts into compressed Java classes. You can
access this service by contacting Slangsoft
directly.

Programmers (and end users) can test their
multilingual applications by using the virtual
keyboard as shown in Figure 2.

I selected “Russian” in order to display the
keyboard shown in the figure – the keyboard is
composed of Cyrillic characters instead of the

jmilbery@kuromaku.com

LingoGUI toolkit: Slangsoft
Web: www.slangsoft.com
Phone: 972-2-648-2424
Fax: 972-2-648-2425
Address: Slangsoft
Technology Park Building 1B
Manhat, Jerusalem 91847, Israel

Test Environment
Client: Sony Vaio Ultrathin, 128MB RAM, 7GB

disk drive,Windows 98 Release 2

Pricing
Up to 100 users: $900, up to 1000: $2,700

Unlimited - $3,600

P
R

O
D

U
C

T

R
E

V
I

E
W

P
R

O
D

U
C

T

R
E

V
I

E
W

LingoGUI 1.1
by Slangsoft

Use this toolkit to harness
your Java apps to support
international languages,
and LingoGUI as part of your
development environment

REVIEWED BY JIM MILBERY

Java COM

64 APRIL 2000

TABLE 1 LingoGUI’s AWT widgets

LINGOGUI COMPONENT DESCRIPTION
SLLabel Text label, used as a label for other widgets or for displaying text strings on a form
SLButton Command button
SLToggleButton Command button that operates like an on/off switch
SLCheckBox Individual checkbox
SLCheckBoxGroup Group of checkboxes (allows checkboxes to act as radio buttons)
SLList List box
SLTextArea Text area (multiline)
SLTextField Simple text field

AUTHOR BIO
Jim Milbery is a software consultant with Kuromaku Partners
LLC (www.kuromaku.com), based in Easton, Pennsylvania. He
has over 15 years of experience in application development

and relational databases.

65APRIL 2000

Java COM

InetSoft
www.inetsoft.com

Java COM

66 APRIL 2000

usual North American QWERTY. Using this applet, I was
able to test out my text fields and text areas by entering
Cyrillic characters. The keyboard applet runs as a separate
window but it communicates with the primary applet
window as a nonmodal application would. You can move
back and forth between either panel and LingoGUI will
load the “typed” text into whichever widget on the main
panel has “focus.” Closing down the main applet win-
dow causes the virtual keyboard to disappear as well,
which is exactly what you’d expect it to do. This clever
feature allows you to test out multiple languages with-
out having to actually install the language onto your
hardware platform.

The really powerful thing about the virtual keyboard
is that it automatically maps the keys on your com-
puter’s keyboard as well. Once I had the virtual key-
board displayed in Russian, I was able to enter Cyril-
lic characters directly on my PC keyboard. (Although
I stuck with the Russian language for most of my test-
ing, the Asian languages – Chinese, Japanese and
Korean – are impressive as well.)

Once your application has been built using Lin-
goGUI, you can use the Resource Bundle File Builder
to manage the various languages that you’ll use
within your applications (see Figure 3).

Basically, the Resource Builder allows you to asso-
ciate resource keys using English along with text
strings using one of the supported international
languages. You can enter Unicode characters direct-
ly into LingoGUI widgets, but you’ll find it easier to
use the Resource Bundle File Builder to manage
your text strings. The virtual keyboards are available
inside the Resource Bundle File Builder as well, and
I was able to add some Russian text for the various
resource keys in the sample resource files. (Since I
don’t speak a word of Russian beyond “Stolichnaya,”
I’ve no idea just what I entered, but it looked cool
just the same.) The output of the Resource Bundle
File Builder is a series of resource file classes with
Unicode characters bundled in. I found this utility
useful, but it’s a very basic interface. (For example,
the only way to open a new resource file is to restart
the Resource Bundle File Builder.)

While Slangsoft covers the basic set of AWT wid-
gets, most of the popular Java development tools
provide for an extended set of AWT-compatible wid-
gets. VisualCafé, for example, provides a formatted
text field that can be used for masking date fields
(and they also offer some nice features such as “data-
bound” AWT widgets as well). In the meantime, noth-
ing precludes you from mixing these other AWT wid-
gets with the LingoGUI widgets so long as you’re will-
ing to live with “partial” internationalization. I’d
expect Slangsoft to add support for some of these
additional AWT widgets in the future. (They men-
tioned they’re already working on a Swing version of
LingoGUI that will work with JDK 1.3, which you can
read about on their Web site.)

Summary
Slangsoft provides a nice toolkit for harnessing your

Java applications to support international languages, and
I’d recommend that you consider LingoGUI as part of

your development environment. You can easily evaluate
the software yourself by downloading it from their Web site
www.slangsoft.com.

P
R

O
D

U
C

T

R
E

V
I

E
W FIGURE 1 LingoGUI demo applet

FIGURE 2 Virtual keyboard

FIGURE 3 Resource Bundle File Builder

67APRIL 2000

Java COM

Oopsla 2000
www.oopsla2000.com

HTMLStream
– a purpose-built
tool for teaching
Java and general
OO concepts
to computer

science newbies

Java COM

68 APRIL 2000

J D J F E A T U R E

WRITTEN BY DANIELA MICUCCI & ANDREA TRENTINI

In this article we’re going to describe a tool

that we’ve created to help OO newcomers

understand the class/instance relationship,

inheritance between classes and linking

between objects…by automatically converting

an object graph into HTML. The tool we’ve cre-

ated is based on the “circlegram” idea used by

almost every object-oriented teacher during

conventional “chalk and blackboard” lessons.

Our work at the computer science depart-

ment of Milano-Bicocca University in Italy is a

mix of software design, programming and

teaching. We use Unified Modeling Language

(UML) for design, Java for programming and

blackboards for teaching. When we teach, we

also sometimes use overheads/slides. “So

what?” you may say, “every teacher in the

world does the same….”

69APRIL 2000

Java COM

IAM
www.iam.com

Java COM

70 APRIL 2000

Right, but we have an added problem: we have to teach Java and gen-
eral OO (object-oriented) concepts to students at their very first course
at the very start of their computer science career. So these students are
often a complete tabula rasa – they’ve had no prior programming expe-
rience whatsoever.

This happens because in Italy we don’t have screening or filtering at
entrance: every high school student can enter almost any university, and
major in whatever he or she likes. There are no formal restrictions or
requirements, so a student from a high school where they specialize in
Greek and Latin can enroll to study software engineering or physics.
(Students can then abandon or change studies as and when they realize
their mistake, along the lines of the DOR army mechanism – “Dismissed
On Request”.)

Given this situation, you can just imagine how our Java programming
course attracts an eclectic group of students: we have students with no
prior experience in using a PC, let alone programming!

The business world isn’t that different. We dare say this because we
also teach short Java courses for programmers from a wide variety of
companies. They often have prior experience in languages such as
COBOL, RPG, C, Visual Basic, and so on. Sometimes (very rarely) we also
meet a C++ programmer. But prior knowledge isn’t always an advantage:
it can be misleading when you try to map a procedural language into an
object-oriented one.

In both cases (university and business), we face a major problem
when teaching Java and OO concepts: we call it the “class/instance prob-
lem.” Newcomers and experienced procedural programmers alike find it
difficult to fully grasp the meaning and the difference between a class
and its instances (except of course in the case of a good C++ program-
mer).

Now of course we haven’t discovered anything that wasn’t already
known; it’s a problem that’s been addressed before – see for example
Top-Down Teaching: Object-Oriented Programming in CSI by R. Decker
and S. Hirsfield (ACM SIGCSE 1993, pp. 270–73). Indeed it’s one of the
reasons people debate whether or not choosing an OO language as the
first language is the right thing to do.

Nonetheless, the class/instance problem remains the first and
probably the biggest hurdle you face when teaching (and, seen from
the student’s point of view, when learning) your first OO language.
We’ve seen students struggle with “can’t make static reference to a
nonstatic attribute” errors. We’ve seen Java programs with classes full
of static methods and no instantiation at all. And we’ve seen many
techniques described in the famous “How to write unmaintainable
code” Web site (http://mindprod.com/unmain.html) actually being
used!

Alas, the class/instance problem isn’t the only one. When you code in
Java you’re forced to divide your product into many files. This policy is
good for experienced programmers – they can organize code better, in
separate files and directories. But while the experienced programmer

can keep track of the whole product, the Java newcomer isn’t always able
to see a bunch of classes as a complete program. When novices are edit-
ing a piece of code they have to remember every relationship existing
between the current Java file and every other one. They must learn (and,
we might add, learn very fast) that the class they’re creating has attrib-
utes and methods not present in the current opened file. And we must
help them as best we can.

To do so (and to help ourselves in teaching), we tried to address these
problems by “porting” a teaching technique taken from traditional class-
room lessons to a software tool.

What We Needed,What We Produced
We started from something we knew very well: classic “chalk and

blackboard” teaching. During traditional lessons, when we need to
explain the class concept and the instantiation mechanism, we usually
try to explain the coupling between class and instance by speaking and
drawing on the blackboard. We use phrases like “any class you define is
a template…,” “when you instantiate an object you’re in fact allocating
memory…,” “attributes are allocated at their respective class level…,”
and other more metaphorical ones that we won’t bother to report here.
To represent a runtime situation, we usually draw “circlegrams” on the
blackboard (see Figure 1).

The example shown in Figure 1 is a common form of circlegram: it
represents an instance of a hypothetical class C with its attributes, both
native and inherited, correctly placed (every attribute has an example
value). To mimic the classroom situation we created a package, called
HTMLStream, to generate an HTML representation of a circlegram.
Remember that we want to map inheritance with a circlegram, but we
also want to show the linking between objects (reference attributes).

In HTML there are hyperlinks – a perfect solution for mapping object
links. So we had to create only the inheritance representation. We chose
the HTML TABLE to represent an object instance, with a recursive table-
in-table to show inherited attributes. The current format is shown in
Table 1.

This representation should also be familiar to someone accustomed
to UML class symbols, except that in our case inherited attributes are
embedded inside the object instead of having an arrow pointing to the
extended class. The table-in-table format converts an object like the one
shown in Figure 2 into the HTML visualization shown in Figure 3.

When converting a complex object graph, our tool will generate an
HTML page (it may be a long page) with links and internal anchors. An
object graph (a bunch of interlinked instances in memory) is “lin-
earized” in one single HTML page. Every reference between instances is
mapped with an internal link to an anchor on the same page; in fact,
every single object is converted into a piece of HTML text that contains
links to other “objects,” and is also a target (HTML anchor) to be point-
ed to. Graphically, every object having reference attributes will look like
the one shown in Figure 4.

At runtime, in memory, the same object will be allocated as a graph
(see Figure 5).

Our generator will create an HTML page similar to the one rendered
in Figure 6.

ABC
int i_c;

25

float f_b;

3.7665

boolean b_a;

true

class C

extends B

{int i_c;}

class B

extends A

{float f_b;}

class A

{boolean b_a;}

FIGURE 1 The circlegram concept

TABLE 1

<hidden NAME tag> <hashcode of object> <class>

<name of field> <value of field>

<name of field> <value of field>

<name of field> <if field is pointer, then this is a link (HREF) to another
object-anchor>

<if this objects extends another one, here you find a "table in table" with the same
format>

71APRIL 2000

Java COM

MetaMata
www.metamata.com

Java COM

72 APRIL 2000

The HTMLStream tool can be used during a lesson to explain inheri-
tance and reference attributes, but of course it can also (and should also)
be used by all students to experiment with their own source code. Stu-
dents feel at home browsing an HTML page; they’ll explore objects the
same way they explore the Internet.

The whole process of generating an HTML page from instances in
memory can be described with this checklist:
1. Design time: Describe your classes using UML – or other formal

design languages (see Figure 7).
2. Coding time: Write your Java source code, adding special printing

instruction (see “How to Use HTMLStream” section later in the arti-
cle). Below is the example source for class MyClass (methods
removed) that has been converted and shown in Figure 6:

public class MyClass

{

int num;

Date date;

float fl;

AnotherMyClass o1,o2,o3,o4,o5;

}

3. Runtime: Run the code redirecting output to a file
4. Browsing time: Examine the result – again see Figure 6.

Other Products Already Available
Of course, before developing this product we searched the Internet to

see if there were any similar tools already in existence. We found there
are two main categories of software visualization: source visualization
and runtime visualization.

Source visualization is used by developers to keep track of what they
(or other developers) have done. With source visualizers, you can pro-
duce, for example, call graphs, statistical reports and tree representa-
tions. Runtime visualization is subcategorized into pre- and post-
mortem visualization, “pre” meaning “running” and “post” meaning
“after completion.”

Information about software visualization is readily available starting
at www.cc.gtech.edu (the research area of professor Stasko and col-
leagues). There’s also a journal article to be aware of, “An Effective Web-
based Software Visualization Learning Environment” by J. Domingue
and P. Mulholland, in the Journal of Visual Languages and Computing, 9
(5), 1998, pp. 485–508. And there’s a book chapter too, “Using Software to
Teach Computer Programming: Past, Present and Future” by P. Mulhol-
land and M. Eisenstadt, in Software Visualization: Programming as a
Multimedia Experience (Cambridge, MA: MIT Press, 1998).

In its present version, HTMLStream is mainly a postmortem visualiz-
er, even though it produces output throughout the execution of the ana-
lyzed program. At the end of execution, the user can browse through the
HTML page and view what’s just happened.

After our resource search we decided not to use any of the preexist-
ing tools for the following reasons:

• Most of the products already created are targeted at runtime visual-
ization, that is, they generally don’t save any state for later viewing
(apart from “core dumps”).

• Very few of them are developed for the Java language.
• Most of the ones already usable for Java weren’t free.
• The most relevant candidate among those that were free, BlueJ (BlueJ

– Teaching-Oriented Java IDE – see www.sd.monash.edu.au/bluej) is
an interesting product developed for teaching OO that has an object
inspector but doesn’t show attribute inheritance. (BlueJ is also an IDE,
whereas for teaching purposes we needed nothing more than the
standard JDK. We didn’t want to confuse students with a GUI product;
we believe they must learn the language by writing code character by
character.)

How to Use HTMLStream
First, here’s a four-step checklist for the impatient:

1. Download the package available from the HTMLStream home page
(www.sal.disco.unimib.it/~atrent/htmlstream.htm).

2. Compile everything (“javac *.java”).
3. Run MyClass (“java MyClass” or “java MyClass > file.html” if you want

to capture output in a file for later viewing).
4. Watch the screen, and you will be shown a JFrame containing an

example HTML-ization (see Figure 8).

int pro;

8

AnotherAgain
MyClass

Another
MyClass

DefaultHtmlizable

int rand;

417

FIGURE 2 Specimen circlegram FIGURE 3 Single object “HTML-ized” FIGURE 4 Object with reference attributes

MyClass@fc5d0a82

AnotherAgainMyClass@fd390a82

AnotherAgainMyClass@fd010a82

AnotherMyClass@fd050a82

AnotherMyClass@fdc90a82

AnotherMyClass@fd3d0a82

FIGURE 5 Object graph in memory

73APRIL 2000

Java COM

VisiComp
www.visicomp.com

Java COM

74 APRIL 2000

Next, instructions for everyone else. When you need to “print” (con-
vert to HTML) an object you must:
1. Create an instance from the HtmlStream class.
2. Pass the reference of the printable object to the HTMLStream.
3. “Print” the HTMLStream object, in the usual Java way (Sys-

tem.out.println).

This means that you can use HTMLStream only by inserting special
printing statements in your code. Another thing to bear in mind is that
not every object is “printable”: you can print only certain types of
objects, namely the ones that implement the HtmlizableI interface. Let’s
see our first example:

// MUST be HtmlizableI

MyClass toBePrinted = new MyClass();

// "the printer"

HtmlStream hStream = new HtmlStream(toBePrinted);

// print the HTML representation

System.out.println(hStream);

The HTMLStream is also useful if you want to add (or “queue”)
other objects at a later time – assuming that we still have hStream in
scope:

// adding new objects

hStream.grow(new AnotherHtmlizableI());

hStream.grow(new AgainAnotherHtmlizableI());

/* print the HTML representation,

this time includes the new objects */

System.out.println(hStream);

This last example is one reason for the existence of the HTMLStream
class: it’s useful when you need to queue more than one reference for
printing. It’s very similar in usage to the ObjectOutputStream; in fact, the
HTMLStream works more or less the same way (i.e., conceptually). A
mental aid when using HTMLStream is the “printing queue” metaphor:
you submit objects to the stream when you’re satisfied you can start the
actual printing of the stream itself.

How Can I Make My Objects Printable?
As we mentioned before, an object must be HTML-printable to be

passed to the HTMLStream. To make an object fulfill this criterion you
have two basic choices:
• Your object implements the HtmlizableI interface. This way (and

it’s the hard one), you must implement every method in that inter-
face, but at least you spare the Java single-inheritance for some-
thing else.

• Your object inherits from DefaultHtmlizable class (provided in the
package). This way, you don’t need to implement anything; you just
extend a particular class and that’s it: your object inherits HTML
printability. By contrast, you can’t inherit anything else (at least in
Java).

A problem that affects this implementation (and will probably
be circumvented in future releases) is that standard JDK objects are
not already HTML-printable. To print a standard JDK object you
either have to build a wrapper class that translates it into an Html-
izableI object, or you must “explode” it if it’s some kind of contain-
er. An example of the latter case can be found inside the Default-
Htmlizable class source: we explode a Vector or a Hashtable; look at
the method isComplexUsable(Object o) in the file DefaultHtmliz-
able.java.

FIGURE 6 An object graph converted to html

AnotherMyClass
rand: int

MyClass
 num: int
 date: Date
 fl: float
 01: AnotherMyClass
 02: AnotherMyClass
 03: AnotherMyClass
 04: AnotherMyClass
 05: AnotherMyClass
 arr: AnotherMyClass[]
 objects: Vector

FIGURE 7 UML fragment

FIGURE 8 JFrame containing htmlization

75APRIL 2000

Java COM

Software
AG

www.softwareag.com

Java COM

76 APRIL 2000

How We Did It – Implementation Notes
(Authors’ Disclaimer: Please note that we designed this tool for teach-

ing purposes only, so our implementation is somewhat “quick and dirty”
and can certainly be improved upon.)

To implement this htmlization mechanism, we took inspiration from
the serialization feature already present in Java. This “pattern” is very
similar to the Externalizable mechanism: the serializable object must
“do something” to be serialized; it’s not completely passive.

Remember that we had to render the three aspects mentioned above:
inheritance, attributes and links (references to other objects). Inheri-
tance is represented by the recursive table-in-table (every attribute is
printed coupled with its value). Any link (attribute that is a reference)
will be a hyperlink to an anchor somewhere on the same page.

The main problem in performing this conversion is, for example,
when an object points to another object, which in turn points to anoth-
er one, which in turn points to the first one – that is to say, a circular list.
This is a common situation in a running program. In fact, we call them
object “graphs,” not trees. If we want to convert everything automatical-
ly, meaning that every reference inside the root object (initial object) is
automatically followed, we need a way to avoid infinite loops when con-
verting circular graphs or even the simple multiple referentiation.

Loop avoidance is the primary rationale for the existence of the
HTMLStream class. An HTMLStream is a “container” that can be “grown”
by adding HtmlizableI objects. An “add” operation won’t succeed if an
object is already present in the stream.

We must solve another problem: automatic reference following. If we
want to “print” an object through this stream, we want to avoid passing
every single reference to be printed; we just want to pass the graph “root”
(quoted since it is a graph and there is no formal root) and let the stream
do the rest. This is the role of any HtmlizableI object (implemented in
the DefaultHtmlizable class): instances from this class can scan their
attributes and treat them “correctly,” automatically adding to the stream
every referenced object (have a look at the method grow() in Default-
Htmlizable.java). The pseudocode for the scan&grow algorithm is:

for every attribute of this instance

if attribute is NOT primitive

if attribute is HtmlizableI

stream.grow(attribute)

else

wrap it (if possible) and grow stream

Actually, this procedure is executed at each class “level.” We use
reflection to extract attribute details, and we do this for each class level
up to but excluding Object, the top class in Java. For every class level
scanned we open a new TABLE tag. At the end we close everything, thus
drawing our desired “html circlegram.”

Ideas for Past, Present and Future Development
Last year, at the beginning of our work, we thought about using XML

for conversion and viewing (see www.xml.org, www.xml.com and
www.w3.org). Back then, we abandoned the idea because of the prevail-
ing lack of XML tools, but the situation is evolving rapidly. Since it’s now
gaining respect, even in the Java world, XML could be a viable option
now.

There are two categories of ideas for development: minor (e.g., aes-
thetic or “easy” to implement) and major (e.g., semantic) improvements.

Minor ones could be:
• Adding access indicators: Add public, private and protected access

indicators to the attributes printed.
• Resetting the stream: If you need to add a previously added object to

the stream you can’t; at present you must reinstantiate the Html-
Stream. We need a method similar to the ObjectOutputStream.reset().

• Adding a “link count” feature to the HtmlStream: Incrementing a
counter instead of simply discarding an object already present in the

stream). This feature could roughly evaluate the “spaghettization”
level of a student’s code.

• Generating a Web site: Instead of generating a single text stream, it
would be useful to generate a Web site: every instance could be repre-
sented as a single page with links to other pages instead of internal
links (anchors). This way you could graph your site with existing tools
(FrontPage, for example, generates a graphical map of a site). The
graph would represent a visual glimpse of your runtime situation and
you could also navigate every printed instance with the omnipresent
Web browser! To implement this new format we need to rearrange the
classes a little bit (e.g., an object must present itself in at least two
HTML forms: the single-page mode and the sitemode). In sitemode
every page should be named after the object itself; in Java this could
be based on the toString() form of an object – something like
MyClass@fdc90a82.html (<classname>@<hashcode>.html).

• Adding a historicization mechanism: The object htmlization as seen
here is a somewhat static mechanism: at some point in code you print
an object, overwriting the previous state. A historicization mechanism
would be very useful, but it would have to be carefully planned. To be
honest, it’s probably a major change in source code. Also, great care
must be taken in designing the htmlization: how an object state change
could be rendered in HTML. We need an effective way of simultane-
ously representing objects, links and their modification in time.

As for major improvements, there are only two:
• The current mechanism (extending the DefaultHtmlizable class or

implementing “ex novo” a HtmlizableI object) is good enough for
teaching purposes. But in real-world applications it would be better if
an object could be printed anyway simply by encapsulating it into
another object. In Java you can do this by using the serialization pro-
tocol and converting a serialized stream in an HTMLStream. This way,
the only constraint (at least in Java) is that your printable object must
also be declared java.io.Serializable (an interface – this way you don’t
miss inheritance with other classes). Implementing a serialization
wrapper needs more work than for the simple “extends DefaultHtml-
izable” solution.

• Using VRML as output format would also be very interesting, but we
don’t have the resources at the moment to experiment in the VRML field.

Conclusion
Is HTMLStream good for teaching? Is HTMLStream good for first-

year students without programming experience? We believe that, yes,
this tool is good for teaching: we’ve used it in some short courses (on stu-
dents with some prior programming experience) and it greatly helped us
with “bootstrapping” people. But we still have to test it on students as
their first-ever experience.

A tool like HTMLStream – and not only HTMLStream, but any tool –
must be introduced with care. Novice users need to be introduced first
to general programming principles, then to the joys of editing – we had
students editing source files who didn’t know where they’d saved them! –
and to the problems associated with using a PC (for example, if they’re
very young they often ignore basic concepts such as command prompt
and redirection). We’d be very happy to receive some feedback from JDJ
readers. The complete source code for this article can be downloaded
from the JDJ Web site, JavaDevelopersJournal.com.

AUTHOR BIOS
Both Daniela Micucci and Andrea Trentini have worked since 1997 as researchers at Dipartimento di
Informatica, Sistemistica e Comunicazione (DISCo), the Computer Science Department of Milano–Bicocca
University in Italy. Since receiving their computer science degrees, they’ve both been teaching Java and OO
design to companies, in schools and at the university level. Andrea’s research field involves studying and
designing software architectures for educational management; Daniela’s involves designing traffic control
and monitoring software.

micucci@disco.unimib.it / trentini@disco.unimib.it

77APRIL 2000

Java COM

SIC Corp
www.siccorp.com

Several folks in the computing
industry think of 1999 as having been
the “Year of the Application Server.” But
while the term application server itself
may be a fairly recent addition to the
software computing vocabulary, the
application server market has already
become one of the fastest-growing mar-
kets in n-tier computing. Business ana-
lysts estimate its value as being likely to
reach the multibillion-dollar level in
2001.

In today’s distributed computing
environment, the term application serv-
er is associated with state-of-the-art
technology. Perhaps that’s why several
vendors sell their products under the
category of application servers, regard-
less of whether the product actually
offers the features of a basic application
server or not. For example, there are site
builders, Web page designers, integrated
development environments, Web devel-
opment tools and enterprise-level devel-
opment environments. The definition of
what comprises an application server is
more often than not open for interpreta-
tion.

What’s an Application Server?
An application server is, by defini-

tion, “a computer server that serves
applications.” More precisely, an appli-
cation server serves up application ser-
vices. The main purpose of an applica-
tion server is to reduce the workload of
applications by taking over the responsi-
bility of mundane activities involved in
executing the application and making
the application’s services available to
external modules in a reliable manner.

I’d like to take a stab at defining an
application server as follows: an appli-
cation server is a computer program
that resides on a server in a distributed

network and whose main function is to
provide the business logic for an appli-
cation program; an application server
provides a customizable and flexible
execution environment for hosting busi-
ness logic components, thus providing
distributed services and integrity for
application execution.

Traditionally, the application server
has been associated with three-tier
applications. To recap, the components
of a three-tier application are:
1. Front-end client: Typically a graphical

user interface on a personal comput-
er, laptop or a workstation

2. Middle-tier application: Typically a
business logic application on a LAN
or the intranet server

3. Back-end application: Typically a
database/transaction server that pro-
vides access to legacy or back-office
data

An application server provides an
execution environment that decouples
front-end clients from back-end data
access. The execution environment is
supported by an infrastructure that
enables integration among different
applications. Application servers enable
this integration by offering software
components that can be used to create
business logic for an enterprise applica-
tion. The supporting infrastructure may
include architectural frameworks such
as messaging systems, transactional
managers and database accessors.

Benefits of Application Servers
The Internet being the most power-

ful phenomenon driving application
development and deployment today,
application servers came into existence
because of a need in the market to offer
flexible, robust, extensible and stan-

dards-based enterprise applications
that are developed at Internet speeds.

Internet applications are typically
shared between multitudes of parties
participating in e-business transactions.
This necessitates standard architectures
and frameworks that allow application
hosting. Application servers provide the
execution environment for Internet
applications. Vendors in the application
server market add value to the equation
by taking over the burden of application
hosting and offering commoditized
products that enable organizations to
concentrate their resources on building
the applications themselves.

In some ways, the application server
market is moving toward the space cur-
rently occupied by operating systems.
Operating systems are developed and
maintained by third-party vendors.
Companies use operating system ser-
vices to develop applications in their
business niche. In the same way, appli-
cation server vendors can provide third-
party services for use by distributed
application developers.

The benefits to an application devel-
opment vendor of using a third-party
application server are:
• Better product focus
• Abstraction
• Indirection
• Application interoperability
• Better resource utilization
• External support and maintenance

“Pre-Web”Application Servers
The first generation of application

servers came into existence before the
Web became popular. These “pre-Web”
application servers may be categorized
based on the types of services they offer.
Each category of application server
decouples the client from the actual

WRITTEN BY
AJIT SAGAR

A back-to-basics attempt to define the relationship between
Web application servers from application servers

F
or the past few months, I’ve been focusing the discussions
in this column specifically on Web and Java application
servers and on application servers that integrate with Java
technologies. Recently several readers e-mailed me asking
about different aspects of application servers in general, so

this month I thought I’d go back to the basics and talk in
more general terms about Web servers and application
servers.

E - J A V A

Anatomy of a Java Application Server

Java COM

78 APRIL 2000

79APRIL 2000

Java COM

VSI
www.vsi.com

Java COM

80 APRIL 2000

E - J A V A

source of the service. In some respects,
the application server acts as a broker:
the client requests a service; the applica-
tion server then makes a request to the
appropriate service provider and passes
the results of the request back to the
client.

We could categorize application
servers based on the services they offer.
Some pre-Web application servers are:
• TP monitors
• Data servers
• Document servers
• Distributed object servers

Back to Web Application Servers
Web application servers have emerged

as a result of developments in the com-
puting industry. Principal among these
are:
1. The acceptance of the Internet as the

ubiquitous medium for data inter-
change

2. The emergence of HTML as the ubiq-
uitous format for data presentation

3. The evolution of standard distributed
component models

4. The evolution of standard protocols
for data transport

The Web is another environment
that supports n-tier applications. Con-
sequently, the Web application server is
a natural by-product of the evolution of
n-tier distributed application develop-
ment.

Web application servers are a new
type of Internet software. They’re a
result of combining HTTP servers with
distributed component frameworks
(which are also the basis for the distrib-
uted object servers mentioned above).
Currently, most application server ven-

dors offer a combination of object
application servers and Web applica-
tion servers. Each of the other cate-
gories of application servers men-
tioned above has also evolved into spe-
cific categories of Web application
servers.

When you add the Web to an applica-
tion server, you have, literally, a Web
application server. But what does this
actually mean? Let’s go back to the
basics. The Web, in its simplest defini-
tion, is a group of computers that com-
municate via the HTTP protocol – the
communication medium being the
Internet. Hence, a Web server is basical-
ly an HTTP server. Consequently, a Web
application server is a server that makes
an application’s service available to the
client over HTTP.

The relationship between Web appli-
cation servers and Web servers is illus-
trated in Figure 1. The top half of the fig-
ure shows an application server with an
external Web server. The bottom half of
the figure shows an application server
with the Web server bundled in. Note
that the only difference is in the packag-
ing. In the latter case, the Web applica-
tion server vendor bundles a Web server
with his or her product. Such products
should still be able to substitute their
proprietary Web server with a third-
party Web server.

Recipe for a Web Application Server
Let’s take a look at what it takes to

cook up a typical Web application serv-
er. As we’ve seen earlier in this article, a
Web application server needs a Web
server and an application execution
environment. The application execution
environment hosts business objects.
The functionality of these business
objects is exposed outside the applica-
tion server in the form of programming
interfaces. The execution environment
itself comprises the following frame-
works and services:
• Object containers
• Naming/directory services
• Messaging/event framework
• Communications framework
• Security framework
• Transaction framework
• Data access framework

Figure 2 illustrates how these
frameworks fit in an application serv-
er. The Web client accesses the busi-
ness objects of the Web application
server via a Web browser. The request
is made to the Web server, which for-
wards the request to the object con-
tainer using the Naming Framework to
find the business object. The Internet

client uses a distributed communica-
tions protocol such as RMI, IIOP or
DCOM (depending on the computing
environment) to get to the application
server. It also finds the desired object
via the Naming Framework. The busi-
ness objects exist in the context of an
object container. Object containers
expose the interfaces of the objects to
the external world. The Communica-
tions Framework is used by the object
containers for interobject communi-
cations. The application server inter-
acts with other remote systems via the
messaging, transaction and security
frameworks. Data from the back-end
tier is accessed via a Data Access
Framework.

Application Server Computing Platforms
In some ways, operating systems can

be considered as the “0th” generation of
application servers. When life was sim-
pler, the operating system hosted the
application and handed computing
resources to applications when re-
quired. The application developer had a
certain degree of control over the execu-
tion environment. However, application
development required knowledge of
system-level programming. This knowl-
edge was not portable – that is to say,
application developers had to learn
about completely new systems if they
changed the computing platform. Appli-
cation servers abstract application
developers from the gory details of the
operating system’s execution environ-
ment. They do this by managing the
interaction with the operating system
for using system resources and offering
these resources as application server
services. Desired features of the runtime
environment such as load balancing,
fault tolerance, persistence and so on
are offered by application servers for
optimally running the application. Since
application servers abstract the plat-
form or operating system, one logical
way to classify them is on the basis of
the computing platform in which they
execute.

Currently, there are two camps in the
application server industry – the Win-
dows (Microsoft) camp and the Java
camp. Note that here we refer to the Java
software platform, not Java the pro-
gramming language, and so the com-
parison is between software computing
platforms. The Windows platform en-
forces the operating system and corre-
sponding hardware. On the other hand,
the Java platform is a virtual platform
that enforces the programming lan-
guage but can run on a variety of operat-
ing systems and hardware platforms. In

Web
Client

HTTP

HTTP

Web
Server

Application
Server

Web
Browser

Web
Client

Web
Browser

WEB APPLICATION SERVER

WEB APPLICATION SERVER

Web
Server

Application
Server

FIGURE 1 A Web application server is a Web server
with an application server.

AUTHOR BIO
Ajit Sagar is a senior

solutions architect in a
firm specializing in B2B

market places. A
Sun-certified Java

programmer with nine
years of programming
experience, including

three in Java, Ajit holds an
MS in computer science

and a BS in electrical
engineering.

81APRIL 2000

Java COM

YouCentric
www.youcentric.com

both cases, the application servers offered by these platforms meet the
criteria of abstracting the application hosting details from the applica-
tion providers.

Web and Java Application Servers
As mentioned earlier in this article, the class of application servers

that comprises a component of Web architectures comes under the
umbrella of Web application servers. Simply put, Web application servers
serve application services over HTTP (Hypertext Transfer Protocol). A
Web application server is always associated with a corresponding Web
server. Today’s distributed applications that leverage the features of the
Sun Microsystems Java platform often base their architecture on one or
more Web application servers. Similarly, when someone mentions appli-
cation servers today, it’s more than likely that they’re talking about appli-
cation servers that support the Java platform. Such application servers
are often called “Java Application Servers.” The application servers dis-
cussed in previous articles are all either based on the Java platform or
integrate with the Java platform.

Java Platform Application Servers
Java application servers are a by-product of Java’s increasing presence

in server-side middleware and the definition of Java Enterprise APIs by
Sun Microsystems in collaboration with its industry partners. Java Enter-
prise APIs define enterprise-level services for server-side deployments.
As described earlier in this article, the appearance of application servers
in the market dates back to when the concept of multitiered computing
became popular. These application servers provided a hosting environ-
ment for middleware components. Before the stabilization of the Java
Enterprise APIs, however, the definition of middleware components for
a ubiquitous software platform was not uniform across operating sys-
tems. So the application servers were operation-system–specific.

Consequently, each of these application servers provided middleware
services in a proprietary way, making portability and reuse of the compo-
nents difficult. The emergence of the Java Enterprise APIs has enabled the
definition of a standard architecture for middleware components com-
posed of business objects. This architecture clearly defines well-formed
interfaces between the application server’s object containers and the
objects or components themselves. In Java this is made possible by:
• A standards object model (EJB) for designing business objects
• Uniform APIs for accessing the business objects (remote interfaces)
• Container APIs for interacting with the vendor’s mechanisms for

accessing system resources (home interfaces)
• APIs for finding the business objects (JNDI)
• Standard means of accessing these components through a distributed

protocol (Java servlets, RMI)
• Standard APIs for connecting to back-office data sources

The above elements form the components for a basic Java applica-
tion server. This is illustrated in Figure 3. Note that this is a version of Fig-
ure 2 with Java-specific technologies. (Not all of the technologies that
play a part in Java application servers are shown in the figure.)

Trading Places
The application server market is evolving rapidly. In a couple of years,

the survivors of the current “app server wars” will emerge. Java has been
instrumental in getting application servers the attention that they’re cur-
rently receiving – because Java adds hardware platform independence
for the implementation and use of application servers, vastly enhancing
their scope. As J2EE and the EJB model matures and industrial-strength
applications are developed using this model, Java application servers
will continue to play a crucial role in the development of enterprise-level
distributed applications.

Java COM

82 APRIL 2000

Cimmetry
Systems,

Inc.
www.cimmetry.com

RM
I/I

IOP

/DC
OM

Browser Client

HTTP/HTTPS

Internet Client

External
System

Messaging
Framework

Naming
Framework

Security
Framework

Transaction
Framework

Communications
Framework

Data Access
Framework

Web
Server

WEB APPLICATION SERVER

Interface
Business
Object 1 Interface

Business
Object 3Interface

Business
Object 2

OBJECT CONTAINER DB

RMI/
IIOP/
DCOM

FIGURE 2 Components of a basic Web application server

RM
I/I

IOP

/DCOM
Browser Client

HTTP/HTTPS

Internet Client

External
System

JMC/JavaMail

JNDI

Java Security
Framework

JTS

RMI

JDBC

Web
Server

WEB APPLICATION SERVER

Interface
Business
Object 1 Interface

Business
Object 3Interface

Business
Object 2

OBJECT CONTAINER DB

RMI/
IIOP/
DCOM

FIGURE 3 Components of a basic Java application server

E - J A V A

ajit@sys-con.com

83APRIL 2000

Java COM

PointBase
www.pointbase.com

Java COM

84 APRIL 2000

JavaCo
www.javaco

85APRIL 2000

Java COM

on 2000
on2000.com

Java COM

86 APRIL 2000

WRITTEN BY
SAM MCKENNA

Increase overall performance by executing database queries in parallel

W
e’ve all heard about the great benefits of distrib-
uted computing, especially in the areas of scala-
bility and performance.With Java, implementing

a distributed solution has never been easier or
more practical.We’re given three distributed object
options that work quite naturally with Java: namely,
Java RMI,CORBA and EJB.The issue that many Java
developers face when pondering distributed archi-

tectures is whether or not a distributed solution is
appropriate for the problem at hand. Often the
problem being attacked is one that has been tradi-
tionally solved in a nondistributed fashion. One
approach for finding distributed solution potential
is to look for basic tasks in your software that can
be broken out.Once you identify these tasks,all you
need is a framework for distributing execution.

D I S T I B U T E D S O L U T I O N S

Distributed Tasking in Java

This article offers an approach for
building distributed solutions. The funda-
mental idea is to separate the problem into
two pieces, the critical task and the non-
critical tasks. The critical task makes deci-
sions about work to be done. In turn, this
work is done by noncritical tasks. It’s this
separation of responsibility that creates
increased scalability and performance.

Distributed Architecture
A distributed solution usually includes

both a distributed software design and a
distributed network design. An ideal soft-
ware solution should be, in part, transpar-
ently scalable with the addition of new
processors to the network. A three-tier
approach can facilitate this scalability with
the critical task on one tier and the non-
critical task “handlers” on another (see Fig-
ure 1). The noncritical tasks are simple and
atomic. The handlers simply take a non-
critical task and execute it. On the middle
tier lives a centralized task scheduler that
simply accepts new tasks and makes them
available to the handlers. Adjusting the
number of task handlers independently
with regard to the other tiers can increase
performance and scalability.

Task Framework
The defining relationship that consti-

tutes the Task Framework is the division
of responsibility between the Task class
and the Handler class. The Task class is an
abstract class whose subclasses contain
the information necessary for remote
execution. The Handler class is an
abstract class whose subclasses are cus-
tomized to handle different types of Task
objects. It’s the Task object that’s accessed
or transported across the network,
depending on which distributed object
mechanism you use. In order to keep net-
work traffic at a minimum, Task objects
must be as lightweight as possible. They
should contain only data attributes and
accessor methods. The Handler class is

responsible for accessing the Task objects
and performing the appropriate execu-
tion. That means that it’s the Handler
class that maintains connectivity to
external resources such as databases,
mail servers and network printers In
other words, the Task class is responsible
for the information and the Handler class
is responsible for the action. Because the
Task objects are atomic and simple, the
Handler objects are equally basic. This
means that you can have any number of
tasks and handlers instantiated. Only
resources and practicality limit you.

Java RMI, CORBA and EJB each have a
lightweight mechanism that you can take
advantage of when passing around objects
or their interfaces. If you’re like me, this
makes a lot more sense when you see some
code. For Java RMI, the Task class simply
needs to implement the Serializable inter-
face from the java.io packages, as shown in
Listing 1. Listing 2 shows the CORBA IDL
for implementing the Task information as a
structure. Using EJB, the Task class would
be an entity bean as shown in Listing 3.

The remaining examples will use Java
RMI since it’s the simplest way to illustrate
the approach. Please note that CORBA
tends to be a bit faster than Java RMI and
an EJB solution may be less resource-
intensive by taking advantage of instance
pooling. Of course, the underlying remote
method invocation protocol that your EJB
server uses will affect performance as well.

The Handler extends the Thread class
and runs in its own process space (see
Listing 4). It periodically polls for tasks
that are waiting to be executed. In order to
increase performance and reduce net-
work traffic, pending tasks are transported
in chunks. A chunk is simply an unordered

group of tasks. Each Task object is passed
to the handle() method for execution.

Task Flavors
While it’s important that a task is

atomic for performance and simplicity,
its overall function need not be atomic.
Allowing for different types of task behav-
iors will give you greater flexibility by
allowing tasks to function collectively.
Three useful strategies that come to mind
are execution scheduling, task depen-
dency and conditional task creation.

In many cases, you may want to assign
your task a future execution time. Obvious
examples include backing up information,
clearing out log files and even rebooting a
server. There are two categories of sched-
uled tasks: tasks that execute once at a spe-
cific time and ones that execute more than
once on a regular interval. You may be
thinking, “Why not use cron?” The answer
is that you could, but you’d have to create
separate scripts for cron to execute. Addi-
tionally, you have the flexibility of allowing
your software to adjust the scheduled tasks
based on internal state.

Often the appropriate time for execution
is dependent on the completion of another
task. Suppose you have an e-commerce Web
site. You may have a task responsible for
charging a credit card and another that
sends order confirmation e-mail to the cus-
tomer. The e-mail task can simply wait for
the credit card task to complete before it
becomes available for execution.

A task handler may contain condition-
al logic that triggers the creation of new
tasks. Examples of this tend to be more
esoteric and often involve workflow issues.
Perhaps you’re updating a customer data-
base where, if the number of customers
reaches a certain threshold, a new set of
tasks responsible for updating statistical
data elsewhere in the database is triggered.

Task Scheduling
The Scheduler facilitates communica-

Critical Task

Scheduler

Handlers

FIGURE 1 Tasking tiers

AUTHOR BIO
Sam McKenna is a

software developer and
consultant based in

Denver, Colorado. He has
over 10 years’

programming experience
using C++, Forté

and Java.

87APRIL 2000

Java COM

Meet JDJ
EDITORS AND COLUMNISTS
Attend the biggest Java developer event
of the year and also get a chance to meet
JDJ’s editors and columnists

Sean Rhody
Editor-in-Chief, JDJ

Sean is the editor-in-chief of Java
Developer’s Journal. He is also a

principal consultant with Computer
Sciences Corporation.

Alan Williamson
JDJ Straight Talking Columnist

Alan is the “Straight Talking” columnist
of JDJ, a well-known Java expert,

author of two Java books and contribu-
tor to the servlet API. Alan is the CEO
of n-ary Consulting Ltd., with offices in

Scotland, England and Australia.

Ajit Sagar
Editor-in-Chief, XML-Journal

Ajit is the founding editor of XML-
Journal and a well-respected expert

in Internet technologies. He is
a member of the technical staff at

i2Technologies in Dallas, Texas,
where he focuses on

Web-based e-commerce.

Jason Wesra
EJB Home Columnist

Jason is the “Enterprise JavaBeans”
columnist of JDJ and a managing

partner with Verge Technologies Group,
Inc., a Java consulting firm specializing

in Enterprise JavaBeans solutions.

MEETING
September 24-27, 2000

Santa Clara Convention Center
Santa Clara, CA

tion between the critical task and the task han-
dlers. Think of the Scheduler as a synchronized
queue. Any remote process can place a task object
in the queue. Execution handlers in turn pick up
task objects, perform the appropriate execution
and report the result of the task execution. In
some cases, the task handler may create new tasks
and execute them immediately or place them in
the Scheduler. The Scheduler class is responsible
for tracking the various stages of execution for all
tasks as well as controlling the scheduling needs
required by the various task flavors. Tasks exist
within the Scheduler in three states. The pending
state includes tasks that are waiting to be picked
up by a handler. Once a handler has grabbed a
task, it moves into the processing state. After that,
the tasks move into the completed state. In other
words, the Scheduler is responsible for making
tasks available at the appropriate time, whether
it’s the scheduled time or, in the case of a depen-
dent task, when another task has been completed.
Listing 5 shows the interface for the Scheduler.
Since multiple handlers may be requesting pend-
ing tasks at any given time, care must be taken to
synchronize access to the tasks.

Example Application
Maintaining a relational database warehouse

is a good application of this approach. Let’s say
you’re designing a process that continually scans a
database for current information, crunches some
numbers and then updates the database with the
results. In this situation, high performance
equates to a more accurate and up-to-date data
warehouse. I have found that in most cases scan-
ning the database is cheap and updating the data-
base is expensive. Delegating the responsibility of
performing the updates will yield a significant
increase in overall performance. Relational data-
bases are designed to handle multiple concurrent
users. You can take advantage of this database fea-
ture by distributing the tasks in order to increase
performance. Think of the critical task and the
task handlers as database users. The critical task
spends its time scanning the database for neces-
sary changes. It creates Task objects that represent
database updates and schedules them for imme-
diate execution. The task handlers pick up the
scheduled tasks, generate the required SQL and
execute the SQL to update the database. At first it
may seem counterintuitive to add more users to a
database, but you’ll find that this design actually
increases the overall performance. This solution
scales easily by adding more handlers on more

processors. When you deploy this solution, you’ll
need to do a little experimentation to find out
what the best layout is for your particular network.
Listing 6 illustrates a Handler class designed to
update the warehouse.

Extending this solution beyond updating
the database is relatively easy. Simply intro-
duce new Task subclasses and new Handler
subclasses into the mix and make the new Task
objects available to the Scheduler.

Conclusion
Distributed tasking can be applied to solve a

wide variety of problems. As in the database-
warehousing example, using this technique
increases overall performance by executing data-
base queries in parallel while freeing up the criti-
cal task for faster processing. You can also take
advantage of the various task flavors to utilize dis-
tributed tasking to control workflow management
by having tasks trigger other tasks. Nearly any
noncritical task can be delegated to a remote han-
dler. Having a distributed framework in place as a
part of your design will encourage future software
enhancements to follow a distributed model.

There are a few limitations to discuss.
Throughout this article, the Task instances are
stored in memory. This design is fine for small-
scale systems, but it can prove limiting for
large-scale systems where tasks may be queued
rapidly and in large quantities. The best solu-
tion in this case is to have the Scheduler physi-
cally store the Task objects until needed. If you
decide to go the EJB route, your EJB server will
do this automatically for Entity beans either
through serialization or through a relational
database mapping. Another area that needs to
be addressed is exception handling. Exceptions
are likely to occur on the handler tier. Depend-
ing on the type of exception, you may want to
have your handler retry the execution or pass
the exception back to the Scheduler and ulti-
mately the critical task.

It’s never been easier to design and imple-
ment distributed solutions. Not only are distrib-
uted architectures interesting and fun to imple-
ment, they’re now also accessible to practically
every Java developer. Java RMI is free and EJB
servers threaten to be omnipresent in the near
future. The challenge facing the Java developer
is finding new approaches that exploit the fea-
tures of distributed computing.

sam@kenatek.com

public abstract class Task implements
java.io.Serializable
{
…
}

struct Task
{
// Add information specific to the task
};

public abstract class Task implements
javax.ejb.EntityBean
{
…
}

import java.rmi.*;
import java.rmi.server.*;
public abstract class Handler extends
Thread
{

Listing 4

Listing 3

Listing 2

Listing 1

protected abstract void handle(Task task) throws Exception;
public void run()
{

try
{

Scheduler scheduler = (Scheduler)
Naming.lookup("rmi://localhost/scheduler");

while (true)
{

Task[] tasks = scheduler.getTasks(10);

for (int i=0 ; i<tasks.length ; i++)
{

try
{

handle(tasks[i]);
}
catch (Exception handleException)
{

handleException.printStackTrace();
}

}
// Sleep for five seconds
try { sleep(5000); } catch (Exception sleepException) { }

}
}
catch (Exception e)
{

e.printStackTrace();
}

}
}

import java.rmi.*;
public interface Scheduler extends Remote
{

// Add a Task to the queue
public void addTasks(Task[] task) throws RemoteException;

// Get tasks
public Task[] getTasks(int max) throws RemoteException;

// Indicate completion
public void complete(Task[] task) throws RemoteException;

}

import java.rmi.*;
import java.rmi.server.*;
import java.sql.*;
public class UpdateHandler extends Handler
{

private Connection connection_ = null;
public UpdateHandler() throws Exception
{

Class.forName(driver);
connection_ = DriverManager.getConnection(url, user, password);

}
protected void handle(Task task) throws Exception
{

if (task instanceof UpdateTask)
{

Exception exception = null;
UpdateTask updateTask = (UpdateTask) task;
Statement stmt = -znull;
try
{

stmt = connection_.createStatement();

String sql = updateTask.getSQL();

stmt.executeUpdate(sql);
}
catch (Exception e)
{

exception = e;
}
finally
{

try
{

if (stmt != null)
stmt.close();

}
catch (Exception fe)
{
}

}
}

}
}

Listing 6

Listing 5

Java COM

88 APRIL 2000

North-
woods

Software
www.northwoods.com

Wintertree
Software

www.wintertree.com

89APRIL 2000

Java COM

IBM
www.ibm.com

Java COM

90 APRIL 2000

Multimedia Evolution
or Revolution?

Multimedia Evolution
or Revolution?

J D J F E A T U R E

WRITTEN BY LINDEN DECARMO

PART 3 OF 3

91APRIL 2000

Java COM

Embar
cadero

www.

embarcadero.

com

Java programmers have been anxiously await-

ing the release of the Java Media Framework 2.0

for more than a year. Not only does JMF 2.0 finally

let you capture audio and video content, but it

claims to solve the most irritating limitations of

the JMF 1.x release. Does JMF 2.0 live up to its

hype? This article explores the new features and

reveals whether this release was worth the wait.

Although the JMF 1.x API was a dramatic
improvement over Sun’s previous multimedia
efforts, it is a work in progress. For instance,
you can’t record (or capture) multimedia con-
tent. Furthermore, it’s a closed system: it is
impossible to modify or examine multimedia
content once a player begins streaming. Final-

ly, the RTP APIs are strangely designed and
poorly integrated with JMF.

To circumvent these limitations, JMF 2.0 intro-
duces three types of objects: processors, plug-ins
and DataSinks. These objects unleash exciting
new features while maintaining backwards-com-
patibility with your existing JMF 1.x programs.

The improvements in JMF 2.0 are caused by
processors, a special type of Player that lets you
perform digital signal processing (DSP) opera-
tions on multimedia content. Content flows into

a processor, which runs an algorithm on the data
and streams the result to a destination object.
Although writing DSP routines may appear
intimidating, you don’t need to be an electrical
engineer to use them. In fact, any competent Java
programmer can create simple DSP routines.

What differentiates a processor from a JMF
1.x player are plug-ins. Earlier JMF players had
DSP-like capabilities, but there was no API to
access them. By contrast, all DSP operations in
processors are performed by well-documented
plug-in objects. Sun divides processors’ plug-
ins into five categories: demultiplexer, effect,
CODEC (compression/decompression), multi-
plexer and renderer (see Figure 1).

Demultiplexer plug-ins receive a single
stream of multimedia content and produce
one or more tracks (or streams) of data. These
types of plug-ins are typically used to separate
distinct audiovisual elements in file formats
such as QuickTime. For instance, a QuickTime
demultiplexer would separate video, audio and
text data into three independently modifiable
tracks (see Figure 2).

Once a track has been demultiplexed, the
processor invokes the preprocessing effect
plug-ins (preprocessing effects occur before
streams are decompressed). Effect plug-ins
tweak content but don’t fundamentally change
the stream. For instance, common audio
effects are gain control and noise removal.

After the preprocessing stage, the processor
checks to see if the track contains (or should
contain) compressed content. If compres-
sion/decompression is required, a CODEC
plug-in is executed. Although JMF 2.0 provides

VIDEO TRACK

AUDIO TR
ACK

Text
Effect
Plug-In

Video
Effect
Plug-In

Audio
Effect
Plug-In

Demultiplexer

QuickTime conte
nt

TEXT TRACK

FIGURE 2 Illustration of the use of a
demultiplexer

Pre-
Processor
Effect

Codec

PROCESSOR Post-
Processor
Effect

Pre-
Processor
Effect

Codec
Post-
Processor
Effect

Pre-
Processor
Effect

Codec
Post-
Processor
Effect

Renderer

Multiplexer

De
m

ul
tip

le
xe

r

FIGURE 1 Illustration of plug-in stages (demultiplexer, effect, codec, multiplexer and renderer)

A revealing
look at the
Java Media
Framework2.0

CODECs for common formats such as MPEG-
audio and Cinepak video, you can insert your
own CODEC for proprietary or unsupported
formats.

Postprocessing plug-in effects are started
when the CODEC plug-in finishes. Normally,
both pre- and postprocessing plug-in effects
operate on uncompressed content. Conse-

quently, if you’re decompressing (or playing)
content, you should implement a postprocess-
ing effect. Similarly, when compressing (or
recording), effect processing should be done in
the preprocessing phase (see Figure 3).

When the postprocessing plug-in com-
pletes, the processor can send the resultant
tracks to either a renderer plug-in or a multi-
plexer plug-in. Renderers are terminating
objects that transport a track to its final desti-
nation device. For example, an audio renderer
would stream uncompressed pulse code
modulation (PCM) content to its associated
audio hardware. Likewise, a video renderer
paints bitmaps onto a video device or win-
dow.

Multiplexers are the inverse of demulti-
plexers: they combine two or more tracks into
a single track (see Figure 4). Multiplexers are
popular in recording scenarios since they let
you combine multiple tracks into a single for-
mat (e.g., QuickTime or MPEG).

Once the plug-ins have finished, you can
stream the output to a DataSource created by
the processor. The DataSource can be used to
transfer the output of the processor to another
player or for recording purposes.

New States of Mind
Conventional JMF players go through five

state changes (unrealized, realizing, realized,
prefetching and prefetched) before they can
commence playback (see my February JDJ
article [Vol. 5, issue 2] for more information
on states). Processors undergo two additional
state transitions before they enter the realiz-
ing state: configuring and configured (see Fig-
ure 5).

When a processor enters the configuring
state, it attempts to demultiplex its input
stream and determine the type of content in
each track. A processor becomes configured
when the input stream has been demultiplexed
and essential track information has been
retrieved. It alerts you about the new state by
reporting a ConfigureCompleteEvent to your
application.

Once the processor is configured, Track-
Control object(s) can be obtained via the get-
TrackControls() method. These objects let you
determine which plug-ins are active and the
specific phase a plug-in should execute.

Most programmers don’t care about DSP
processing. Rather, they only need to play or

Java COM

92 APRIL 2000

Softwired
www.softwired.com

codec
(decompressor)

Postprocessing
effect

Postprocessing
effect

codec
(compressor)

COMPRESSED

CONTENT

UNCOMPRESSED

CONTENT

COMPRESSED

CONTENT

FIGURE 3 Preprocessing effects operate before compression while
postprocesssing effects run after decompression.

Audio Post-
Processor
Effect

Video Post-
Processor
Effect

Multiplexer
COMBINED AUDIO/

VIDEO STREAM

VIDEO

AUDIO

FIGURE 4 Illustration of how a multiplexer combines two streams into
a single stream

record. Consequently, JMF lets you bypass
these details via the processor’s start() method.
If you start() the processor when it’s unrealized,
it implicitly goes through the configuring, con-
figured, realizing, realized, prefetching and
prefetched states before finally commencing
playback or capturing data.

The Kitchen Sink
Once a processor completes its task, you

use a DataSink to save content to a specific file
format or retransmit the media across a net-
work. Like renderers, DataSinks are terminal
objects that stream content to an output
device. For example, if you had an MPEG
processor that captured and compressed
MPEG audio streams, you could connect its
DataSource to an MPEG DataSink. The MPEG
DataSink would in turn save the content to a
properly formatted MPEG Layer 3 (or .mp3) file
(see Figure 6).

DataSinks aren’t restricted to saving data to
files. In fact, they can communicate with a vari-
ety of output devices. For instance, you could
create a broadcast DataSink whose output
device is the Internet. It takes the output of a
JMF DataSource and transmits it to a well-
known multicast IP address (see Figure 7). All
computers that are listening to the multicast IP
address can receive and decode the stream
produced by the broadcast DataSink.

Since DataSinks must be connected to an
input DataSource, it can be tricky to construct
one. Fortunately, the Manager simplifies this
process with the createDataSink() method.
First, obtain a DataSource (typically from a
processor) and pass it to createDataSink(). The
manager then constructs a DataSink and
attaches it to your DataSource.

Capture the Flag
If you want to capture content, you’ll need

to construct at least one processor and a
DataSink. First, create and configure the
processor (adding CODECs or effects). Then
attach the processor’s output DataSource to
the DataSink via createDataSink().

Before recording commences, you must
start() the DataSink. This ensures that the

DataSink is ready to process the content when
it arrives from the processor. The capture
process commences when you call the proces-
sor’s start() method.

When you’re finished recording, you must
flush (or write) all remaining buffers to the file
created by the DataSink. To ensure no data is
lost, you first close() the processor to cease
recording. Then you close() the DataSink to
ensure that all content is written to the file.

RTP Cleanup
As we discovered last month, the JMF 1.x

RTP architecture is inconsistent and often con-
fusing. Fortunately, Sun has dramatically
improved the JMF 2.0 RTP API by leveraging
processor plug-ins such as CODECs, demulti-
plexers and multiplexers.

As we also discovered last month, the
RTPSessionManager shields you from the RTP
programming complexities. The JMF 2.0 ver-
sion of RTPSessionManager is equally simple:
you create a MediaLocator and construct a
player from the MediaLocator.

Spaghetti Architecture
Although RTP player creation is similar

between JMF 1.x and 2.0, the objects compos-
ing a player are dramatically different. For
instance, a JMF 1.x RTP player consists of an
RTPSessionManager (i.e., an RTPSocket and
MediaProxy objects) and an RTP MediaHan-
dler. Alas, neither are pure JMF objects.

The RTPSocket is a strange DataSource that
not only transmits and receives RTP content
but also contains another DataSource used for
communicating Real-Time Control Protocol
(or RTCP) information. Since JMF 1.x had no
API for transmitting outbound streams, Sun
created an RTP-specific outbound DataSource
– RTPIODataSource – and a nonstandard inter-
face – PushDestStream – to push (or stream)
content to the RTPIODataSource.

RTPSessionManager also contains a Media-
Proxy that converts the output of the RTPSock-
et DataSource into a format that the RTP
MediaHandler can understand. It consists of
an RTP Protocol Handler, a depacketizer and a
depacketized DataHandler (see Figure 8).

93APRIL 2000

Java COM

Embar
cadero

www.

embarcadero.

com

Co
nt

ro
lle

r
St

op
pe

d
St

at
e

Configuring Configured Realizing Realized Prefetching Prefetched Started
State

Unrealized

FIGURE 5 Illustration of processor state changes

MPEG Layer 3
Processor

MPEG Layer 3
DataSink

mp3
Data
File

FIGURE 6 Connecting an MPEG DataSink to
an MPEG capture device results in
an MPEG file being saved.

MULTIMEDIA

CONTENT

Broadcast
DataSink Network

FIGURE 7 A broadcast DataSink can output
multimedia content to the Internet
rather than a file.

Although the MediaProxy supports the most popular RTP formats,
Sun realized that developers would need to support additional formats
(or RTP payloads). Unfortunately, JMF 1.x doesn’t define a mechanism to
customize MediaProxys. Thus they created the depacketizer interface, a
non-JMF interface that lets you decode custom RTP payloads inside an
RTP-centric MediaHandler.

Elegant Design
The JMF 2.0 RTPSessionManager uses a dramatically different

approach to create an RTP player. Rather than relying on nonstandard
interfaces like the depacketizer and PushDestStream, the 2.0 RTPSes-
sionManager replaces them with standardized objects such as RTP-
Streams, processors, CODECs and demultiplexers (see Figure 9).

An RTPStream represents the flow of RTP data and this interface is
used by the RTPSessionManager to communicate with other parties in
the RTP session. There are two types of RTPStreams: ReceiveStream and
SendStream. ReceiveStream objects are created when content is received
from a remote party. SendStream objects are constructed when content
must be sent to a remote party.

If you’re receiving (or playing) RTP content, then the RTPSession-
Manager will create a ReceiveStream for each stream in the RTP session.
The output of the RTPSessionManager is streamed into a standard JMF
DataSource, which then funnels its output into a processor where the
content can be decompressed and effect plug-ins executed. The proces-
sor’s output is then sent to a DataSink, renderer or MediaHandler (see
Figure 9).

To broadcast an RTP stream, you create a DataSource to retrieve the
content. This information is streamed into a processor for compression
and then sent to a DataSource connected to the RTPSessionManager.
The RTPSessionManager uses the SendStream interface to transmit this
data to other parties in the RTP session (see Figure 10).

Although the RTPSessionManager still uses RTPSocket to send and

Java COM

94 APRIL 2000

RTP
Protocol
Handler

RTP MediaProxy

depacketize Depacketizer DePacketized-
DataHandler

transferData()

FIGURE 8 RTP MediaProxy operation

Capture
DataSource
(Audio)

DataSource RTPSession-
Manager

RTP Media to

Internet
Processor

FIGURE 10 RTP transmission components

RTP Player

DataSink

DataSource ProcessorRTPSession-
Manager

RTP Session Data

FIGURE 9 Illustration of JMF 2.0 RTP Playback architecture

QuickStream
www.quickstream.com

receive RTP streams, Sun transitioned from the
temporary RTPIODataSource and PushDest-
Stream to RTPPushDataSource and PushSource-
Stream. Since the latter is also used when captur-
ing content, the new RTP architecture is finally
consistent with JMF principles.

Alas, RTPSocket retains the concept of an
RTCP DataSource contained within the RTP
DataSource. From a purely object-oriented
standpoint, a cleaner solution would be a sin-
gle DataSource that could simultaneously han-
dle both RTP and RTCP streams. Since this
design has survived the transition from JMF 1.x
to 2.0, we must assume that Sun believes this
DataSource within a DataSource is the proper
design.

Sun has also replaced the RTP-specific
depacketizer with processors and CODECs. If
you need to implement support for a propri-
etary RTP payload, you’d insert a plug-in (or
CODEC) for that custom RTP payload into the
processor. Another benefit to using a processor
is the ability to insert a multiplexer or demulti-
plexer to split or combine RTP streams (see
Figure 11).

Although these architectural changes create
a more robust environment for RTP develop-
ment, they aren’t backwards-compatible with
the JMF 1.x RTP APIs. If you heeded my advice
last month and concentrated on creating high-
level RTP applications, you should have very
few code changes. By contrast, if you’re using
low-level interfaces such as the depacketizer,
you’ve got a lot of code to rewrite.

RTSP at Last?
Until JMF 2.0, the only way to play RTSP

content was to use RealNetwork’s RTSP-based
player. Although it isn’t well publicized, JMF 2.0
contains early alpha-level code for accessing

RTSP servers. Sun is emphatic that RTSP sup-
port is for evaluation only and shouldn’t be
used in production code. If you need to deploy
an RTSP solution, you should write your own
RTSP MediaHandler or use RealNetwork’s
product.

Conclusion
Although JMF 1.x provides important multi-

media features, it can’t capture content, is diffi-
cult to customize and has a strange RTP archi-
tecture. JMF 2.0 solves these problems with
processors, plug-ins, DataSinks and a
revamped RTP architecture. Processors and
plug-ins let you perform digital signal process-
ing operations on multimedia content, while
DataSinks can be used to store or display con-
tent. By combining processors, plug-ins and
DataSinks, you can capture and compress mul-
timedia content.

Sun’s new RTP architecture also leverages
processors, plug-ins and capture interfaces to
create a flexible solution that can handle
common RTP payloads. And it can also be
easily extended to accommodate custom for-
mats.

Unfortunately, there are some glaring weak-
nesses in JMF 2.0. The RTP API isn’t backwards-
compatible and the RTSP support is immature.
Despite these flaws, JMF 2.0 is a quantum leap
forward for Java multimedia programmers.

AUTHOR BIO
Linden deCarmo is a senior software engineer at NetSpeak
Corporation, where he develops advanced telephony software for IP
networks. Linden is also the author of Core Java Media Framework,
published by Prentice Hall.

95APRIL 2000

Java COM

lindend@mindspring.com

RTP Player

DataSink

Demultiplexer

DataSource

DataSource
Capture
DataSource
(Audio)

PROCESSOR

DataSource

RTPSession-
Manager

FIGURE 11 The demultiplexer splits captured content into three streams: one is transmitted to
the RTPSessionManager; another is saved to a file; the last is sent to a player so
you can monitor what you’re recording.

Embar
cadero

www.

embarcadero.

com

Java COM

96 APRIL 2000

PointBase and ThinWEB
Announce Partnership
(Mountain View, CA, and Ottawa,
Ontario) – ThinWEB Technolo-
gies Corporation and its sub-
sidiary, NoTime Wireless Corpo-
ration, announce an alliance to
facilitate advanced mobile and
wireless
access to
corporate
informa-
tion with PointBase, Inc., a mar-
ket leader in 100% Pure Java
embedded database technology.

The specific benefits that this
alliance provides to the compa-
nies’ customers is that they can
now Internet-deploy their appli-
cations on devices without

browser
restrictions,
firewall con-
siderations,

bulky client downloads, or JDBC
driver restrictions, and without
the need for a continuous net-
work connection.
www.thinweb.com
www.pointbase.com

The Object People Launch
TOPartner Program
(Ottawa, Ontario) – The Object
People launches its TOPartner
Program, an opportunity for
VARs, technology vendors and
solution providers to build offer-
ings complementary to The
Object People’s award-winning
TOPLink family of products.
Companies eligible are those that
have a commercial product ship-

ping (or under development)
that’s complementary to the
TOPLink family of products, or
that have one or more service or
training offerings in place com-
plementary to the TOPLink fami-
ly of products.
www.objectpeople.com

Verge Technologies Joins
Persistence PowerPartner
Program
(San Mateo, CA) – Persistence
Software announces that Verge
Technologies Group, Inc., a lead-
ing provider of
EJB solutions,
has joined the

Persistence
PowerPart-
ner Program.

The two companies will co-mar-
ket and deliver e-business solu-
tions and training based on the
PowerTier for EJB application
server.
www.vergecorp.com
www.persistence.com

Persistence Software to
Acquire 10BaseJ
(San Mateo, CA) – Persistence
Software announces that it has
entered into a definitive agree-
ment to acquire 10BaseJ. Based
in San Diego, California, 10BaseJ
is a leading developer of a spe-
cialized, high-performance
enterprise Java servlet engine,
ServletMill. The ServletMill 1.1, a
scalable Java
servlet con-
tainer sys-
tem, was
introduced last December and is
being integrated into the Q1 2000
release of PowerTier.
www.10BaseJ.com
www.persistence.com

Progress SonicMQ Adds
Support For Linux
(New York, NY) – Progress Soft-
ware Corporation announces the
Developer Edi-
tion of its
award-winning
Progress Son-
icMQ Internet
messaging
server, which
will support

the Linux operating system.
The Progress SonicMQ Devel-

oper Edition is
available at no
charge from
www.sonicmq.com,

TogetherSoft Releases
Together Enterprise 3.1
(Raleigh, NC) – TogetherSoft
launches Together Enterprise 3.1.
New fea-
tures
include for-
ward and
reverse engineering for sequence
diagrams (Java), visual report
designer and custom diagram
types and diagramming.
www.togethersoft.com

Unify eWave Commerce
Delivers E-commerce
Solutions
(San Jose, CA) – Unify Corpora-
tion introduces Unify eWave
Commerce,
an advanced
Java-based
enterprise-
wide e-com-
merce system.

Unify eWave Commerce
extends the Unify eWave product
family, the first end-to-end
e-commerce solution based on
an open, component-based, scal-
able architecture.
www.eWaveCommerce.com

eXcelon Corporation and
BEA Team Together
(Burlington, MA) – eXcelon Cor-
poration is entering into a

strategic tech-
nical and
marketing
relationship
with BEA Sys-
tems, Inc. The
partnership is designed to pro-
mote the widespread integration
of BEA WebLogic Server and
eXcelon's Javlin EJB data-cache
server.

In addition to their technolo-
gy agreement, eXcelon Corp. and
BEA are planning a variety of
joint sales and marketing activi-
ties, such as joint seminars, trade
show appearances and sales
calls.
www.bea.com
www.exceloncorp.com

SAGA To Support Progress
SonicMQ˙
(Bedford, MA and Reston, VA) –
Progress Software Corporation
and SAGA Software announce
that the preferred messaging
server for SAGA’s Sagavista is
the award-winning Progress
SonicMQ Internet messaging
server.

Sagavista is able to intelli-
gently link front-office Web
applications with any and all
desired enterprise information,
integrating virtually all operating
environments within any enter-
prise.
www.sagasoftware.com
www.progress.com

(Austin, TX, and Pearl River, NY) – Pervasive Soft-
ware Inc. and SYS-CON Publications, Inc., jointly
announce a free trial subscription program for
Tango Developer’s Journal
(TDJ). The first 500 individ-
uals who purchase Tango
2000 products or upgrades
from the Pervasive Online Store or who
register Tango 2000 products or upgrades
will receive a complimentary one-year
subscription to TDJ.

Published quarterly by SYS-CON
Publications, Tango Developer’s Journal

is the industry’s only publication devoted to the
subject of end-to-end Tango Web application
development and deployment.

The free, one time TDJ trial subscription offer
is available to Tango 2000 purchasers in the United
States only through September 30, 2000, or while

the supply of complimentary promotional
subscriptions lasts.

You can go to www.pervasive.com/pur-
chase/ to purchase Tango Development
Studio and Tango Application Server prod-
ucts from the Pervasive Online Store.
www.pervasive.com www.sys-con.com

Pervasive and SYS-CON Offer Trial
Subscriptions of Tango Developer’s Journal

97APRIL 2000

Java COM

Pramati
www.pramati.com

Java COM

98 APRIL 2000

Bluestone Software
Introduces Total-E-Business
(Philadelphia, PA) – Bluestone
Software, Inc., launches Total-
e-Business, a comprehensive,
standards-based, e-business plat-
form. Built
upon J2EE
standards,
Total-e-Business utilizes
advanced JavaServer Pages and
Servlet technology and employs
pure Java and XML.
www.bluestone.com

Worldweb.net
Partners with IIS
(Alexandria,VA) – World-
web.net is partnering with
Integrated
Information
Systems (IIS), a full-service provider
of integrated Internet solutions. IIS
will begin to integrate World-
web.net’s flagship product, Express-
room, into e-commerce applica-
tions for leading businesses.
www.iisweb.com
www.worldweb.net

Inxight Ships Summary Server
(Palo Alto, CA) – Inxight Software,
Inc., announces Inxight Summary
Server Java, a software product that
creates abstracts of online docu-
ments faster and more thoroughly
than comparable products. Sum-
mary Server Java allows Solaris and
other high-end UNIX system users
to view summarized versions of
documents in subsecond speeds,
and lets them customize the con-
tent to obtain the information.
www.inxight.com

Enhydra 2.3
Available On CD
(Orlando, FL) – Lutris Technolo-
gies announces that Enhydra
version 2.3 is now available on
CD. Enhydra 2.3 includes tight

integration
with
Inprise/Bor-

land’s JBuilder Foundation IDE
through the inclusion of a new
product, the Enhydra Tools for
JBuilder.
www.enhydra.org

Brickbats and bouquets for our ongoing series
by regular contributor Rick Hightower

Hightower Citations Don’t Support Claim
I’d like to point out that www.sys-

con.com/java/archives/0502/hightower/
index_b.html contains a claim not backed up
by the studies cited. The statement, “The
paper states that a scripting language is 5 to
10 times more productive than a strongly
typed language like Java” is patently false.
This is shown by the research cited on John
Ousterhout’s Web page (www.scriptics.com/
people/ john.ousterhout/scripting.html).

Ousterhout cites www.spr.com/library/
0langtbl.html – which shows Perl at a lan-
guage level of 15, Java at 6.

However, the productivity table claims
languages at levels 4–8 produce 10–20 func-
tion points per programmer per month. Lan-
guages at levels 9–15 produce 16–23. This
looks to me like a 100% productivity increase
at best, a far cry from 500 to 1000%!

I also found it disingenuous that the
Hightower article failed to mention that
Ousterhout wrote Tcl!

—Doug Schwartz
Commercial code crafter

dougs@keystrokenet.com

A New Subculture?
Congratulations are in order for Rick

Hightower! He does a great job on the col-
umn and I wish JDJ the best of luck with it!!!
It is indeed a change from the traditional
Java programming language periodical.

Hightower has kind of created a “sub-
magazine” – or potentially a subculture –
that deals with the Java Virtual Machine and
not the Java programming language itself.
That will definitely add substance to JDJ and

open the eyes of Java coders to alternate
100% Pure Java (Virtual Machine) develop-
ment solutions.

Perhaps Rick Hightower should liaise
with the editor-in-chief about being allowed
to preside over such a subdivision of the
magazine. It would be grueling for you to
provide rich content over the diverse JVM
alternatives unassisted; but orchestrating
other articles within your realm would prob-
ably be manageable. Just an idea.

—Ron Crawford II
Sr. Software Engineer

rcrawford@ahtech.com

Two Omissions
Rick Hightower’s article on scripting lan-

guages misses two very important entries:
NetRexx (IBM) – the language known to every
IBM platform programmer (and I have never
meet anyone who programmed in it and did-
n’t love it) and Component Pascal (Oberon-2)
– the language that covers both scripting and
system programming.

The real point of scripting languages
should be to enable nonprogrammers to get
into the component game and to enable pro-
grammers other than the Unix–C–Java group
to be productive without extensive retrain-
ing. In this way, no one language would be
the one – it would be accessible to many
forms of programming.

The point should be to set interfaces, typ-
ing and exception handling as the program-
ming paradigms to learn. Maybe the impor-
tant thing is to have these languages be
morphable into each other so that language
exposure is not an inhibitor to productivity?

In the time I have been in the business,
machines have become very fast but software
productivity and quality if anything has gone
downhill. In my opinion it’s time to rethink
the underlying value of programming.

—Brian R. Atkins,
Chester, VT

BrianAtkins@stargazer.cc

Programming Languages for the JVM
I am writing in response to Rick Hightow-

er’s article in the JDJ February 2000 issue
[Vol. 5, issue 2] about programming lan-
guages for the JVM. He mentions 7 program-
ming languages that can be used within a
JVM but doesn’t mention NetRexx. If the
author honestly has never heard of NetRexx,
then that’s an honest mistake that anyone
can make, but if he knows about NetRexx
and didn’t mention it, why didn’t he mention
it? Doesn’t he realize that it is no service to
his readers that he omits from a list of
options one option that is very useful and
helpful?

If someone were to speak about basket-
ball’s best players and not mention Michael
Jordan, they would INSTANTLY discredit
themselves – as would someone who would
talk about baseball’s best teams and mention
the New York Yankees (and I happen to be a
NY Mets fan!).

Mr. Hightower has spoken about basket-
ball’s greatest players and has not mentioned
Michael Jordan; he has spoken about baseball’s
greatest teams and has not mentioned the Yan-
kees; he has spoken about useful software tools
and not mentioned Rexx or NetRexx.

— Celestino J. Pena
cpena02@cs.fiu.edu

Sun’s Withdrawal from ECMA
Contrary to Sean Rhody’s claim that

“Having Sun in charge allows us all to benefit
from the quick reaction time of a single enti-
ty,” having a single entity in charge is a guar-
antee that the entity concerned will have a
chokehold on development of the language
and can delay the addition of new feature to
suit its own needs. An open standards
process would allow features like real-time
extensions and enterprise JavaBeans to come
out when the technology is ready… and not
when Sun is ready.

—Don W. Andrews
dwa@us.ibm.com

JDJ Reader Feedback...

99APRIL 2000

Java COM

Concentric
www.concentric.om

Java COM

100 APRIL 2000

n-ary
www.n-ary.com

ADVERTISER URL PH PG

4TH PASS WWW.4THPASS.COM 877.484.7277 37

AMERICAN CYBERNETICS WWW.MULTIEDIT.COM 800.899.0110 35

APPLIED REASONING WWW.APPLIEDREASONING.COM 800.260.2772 71

CAREER CENTRAL WWW.CAREERCENTRAL.COM/JAVA 888.946.3822 86

CAREER OPPORTUNITY ADVERTISERS 800.846.7591 102-113

CONCENTRIC NETWORK WWW.CONCENTRICHOST.NET 800.476.0196 89

DEVELOPMENTOR WWW.DEVELOP.COM 800.699.1932 97

ELIXIR TECHNOLOGY WWW.ELIXIRTECH.COM/DOWNLOAD/ 65 532.4300 41

EMBARCADERO WWW.EMBARCADERO.COM/ADMINISTER 83

EMBARCADERO WWW.EMBARCADERO.COM/DESIGN 85

EMBARCADERO WWW.EMBARCADERO.COM/DEVELOP 87

EVERGREEN INTERNET, INC. WWW.EVERGREEN.COM 43

FIORANO SOFTWARE, INC. WWW.FIORANO.COM 408.354.3210 45

FLASHLINE WWW.FLASHLINE.COM 216.861.4000 39

GEEK CRUISES WWW.GEEKCRUISES.COM 650.327.3692 97

GENERIC LOGIC, INC. WWW.GENLOGIC.COM 413.253.7491 10

HOTDISPATCH.COM WWW.HOTDISPATCH.COM 4

IAM CONSULTING WWW.IAMX.COM 212.580.2700 61

IBM WWW.IBM.COM/DEVELOPERWORKS 67

MODIS SOLUTIONS WWW.MODISIT.COM 703.821.8809 29

INETSOFT TECHNOLOGY CORP WWW.INETSOFTCORP.COM 732.235.0137 73

JAVACON2000 WWW.JAVACON2000.COM 78-79

JDJ STORE WWW.JDJSTORE.COM 888.303.JAVA 100-101

KL GROUP INC. WWW.KLGROUP.COM/DEADLINE 888.328.9596 116

KL GROUP INC. WWW.KLGROUP.COM/THREADS 888.328.9596 2

METAMATA, INC. WWW.METAMATA.COM 510.796.0915 55

MICROSOFT MSDN.MICROSOFT.COM/SUBSCRIPTIONS 11

KL GROUP INC. WWW.KLGROUP.COM/REAL 888.328.9596 77

MICROSOFT MSDN.MICROSOFT.COM/WINDOWSDND 13

N-ARY WWW.N-ARY.COM 95

NEW ATLANTA WWW.NEWATLANTA.COM 678.366.3211 53

NUMEGA WWW.COMPUWARE.COM/NUMEGA 800.4-NUMEGA 31

OBJECT DESIGN WWW.OBJECTDESIGN.COM/JAVLIN 800.962.9620 58-59

OBJECTSWITCH CORPORATION WWW.OBJECTSWITCH.COM/IDC35/ 415.925.3460 51

INTUITIVE SYSTEMS, INC WWW.OPTIMIZEIT.COM 408.245.8540 33

PERSISTENCE WWW.PERSISTENCE.COM 17

POINTBASE WWW.POINTBASE.COM/JDJ 877.238.8798 25

PRAMATI WWW.PRAMATI.COM/J2EE.HTM 914.876.3007 69

PROTOVIEW WWW.PROTOVIEW.COM 800.231.8588 3

QUICKSTREAM SOFTWARE WWW.QUICKSTREAM.COM 888.769.9898 49

RIVERTON SOFTWARE CORPORATION WWW.RIVERTON.COM 781.229.0070 93

SEGUE SOFTWARE WWW.SEGUE.COM/ADS/CORBA 800.287.1329 20-21

SIC CORPORATION WWW.SIC21.COM 822.227.398801 75

SLANGSOFT WWW.SLANGSOFT.COM/CODE/SPIRUS.HTML 19

SOFTWARE AG WWW.SOFTWAREAG.COM/BOLERO 925.472.4900 47

SYBASE INC. WWW.SYBASE.COM 800.8.SYBASE 15

SYS-CON WWW.SYS-CON.COM 800.513.7111 34

TIDESTONE TECHNOLOGIES WWW.TIDESTONE.COM 800.884.8665 27

TOGETHERSOFT LLC WWW.TOGETHERSOFT.COM 919.772.9350 6

VISICOMP, INC. WWW.VISICOMP.COM 831.335.1820 57

VSI WWW.BREEZEXML.COM 800.556.VSI 65

VISUALIZE INC. WWW.VISUALIZEINC.COM 602.861.0999 88

YOUCENTRIC WWW.YOUCENTRIC.COM/NOBRAINER 888.462.6703 63

ADVERTISERINDEX

101APRIL 2000

Java COM

Applied
Reasoning

www.appliedreasoning.com

Java COM

102 APRIL 2000

One of the core building blocks of any
system – distributed, local or virtual –
is a database. At some point in the

chain of processing, the ability to store and
retrieve data needs to be addressed. The
capacity to access a database successfully is a
high priority for many projects. Coupled with
the onslaught of the Web and the need to place
some sort of front-end access to a database,
the demand for database connectivity at the
server side is at an all-time high.

To this end I’ll present a number of solutions
for connecting server-side processes to a data-
base. This includes the well-known database
pooling contrasted to the single connection.

Method #1: Connection Per Client
In this example, for each client request that

comes in we will open up the connection to
the database, perform a query and then output
the results back to the client.

CONNECTING TO THE DATABASE
Before we can run any queries on the data-

base, we have to get a handle or reference to it.
Once we have an instance of Connection, we
can run as many queries as we want. However,
we do not directly create an instance of Con-
nection, but ask the DriverManager class to
supply one for us.

The DriverManager will attempt to connect
to the given database with the optional user-
name and password. If it is successful, then an
instance of Connection is returned. Listing 1
illustrates this procedure. (All listings, 1–10, can
be accessed on the JDJ Web site, www.JavaDe-
velopersJournal.com.)

Since we do not have the driver registered in
the jdbc.properties file, we have to make sure
the driver class is available to the virtual

machine. We do this with a call to the forName
method from the Class class. This will load and
link the class name into the virtual machine. In
this instance, we are looking to use the standard
JDBC-ODBC driver that ships with the JDK. This
is controlled by the class sun.jdbc.odbc.Jdb-
cOdbcDriver.

Next, we have to call the method getCon-
nection(...) from the DriverManager class. If all
goes well, a newly created Connection will be
returned. Be careful to get the driver case cor-
rect; some drivers are fussy. Another common
problem is when the connection refuses to con-
nect. Check to see that no one else has a session
open to it. Most databases have a limit to the
number of concurrent connections that can be
open at any one time (this includes shutting
down the file in MS-Access if it is open).

RUNNING THE QUERY
Now that we’ve successfully opened the

connection to the database, it is ready for
querying. Since this is such a generic example,
let’s run a query that will return the complete
table data: every column and every row. We
will print this data back out to the client with a
row per line.

Using the JDBC API we don’t need to know
the name of the columns beforehand (or the
data type, for that matter). We can ask the
assistance of a helper class. You’ll learn more
about that later.

The SQL query in our instance will be:

SELECT * FROM USER_TABLE

It will begin with the creation of a new
Statement class. We make a call to the Connec-
tion class with the createStatement() method,
which will return a new instance of Statement.
From here we can execute the SQL statement
above with a call to executeQuery(...).

This method will return with a ResultSet
instance, which represents the new result
table. Only one ResultSet can be active per
statement.

Listing 2 shows the code used to execute
the query. Since this example has asked for all
the columns back, we get a handle to the
ResultSetMetaData class from the ResultSet
class. This class handles all the information
that describes the data that was returned. In
our example we are only interested in the
number of columns that were returned. But
this class gives access to all the data types of
each column and the column name, if it’s
available.

Running through each row of the result
table is done using the next() method. This
method moves the table cursor on one row.
Unless you are using a full JDBC version 2 dri-
ver, you will not be able to return to a previous
row. If you need to, you will have to rerun the
query.

This servlet does nothing fancy except
return all the data, one row at a time per line.
This is done by building up a temporary string
of the column data by making a call to retrieve
the data in each column of the result table. The
getString(...) method returns the column data
in the given column index in the form of
String. The ResultSet method provides a
getXXX(...) method for each of the data types
available.

Once the query is complete, the result set,
the statement and the connection are closed.
It is important to close it down in the correct
order, or a SQLException will be thrown.

PERFORMANCE
From a technical point of view, the servlet

in this example is perfect. It opens up a con-
nection to a database, it runs a query and dis-
plays the results, and closes the connection
down again. It’s a textbook example, one might
even say.

However, from a practical point of view, it is
useless and you would not use it in a real-
world example. Why, you ask?

For every client request that comes in, a
new database connection is created. This is
not a major problem if only one person at a
time comes to your Web site. However, this
isn’t the case. We have to assume that many
people will be accessing the servlet at once.
Therefore, we could potentially use up all the
concurrent slots on a database engine.

The servlet is also very inefficient. The
JDBC API tells us we can happily reuse the
Connection class, with no need to open and
close it all the time. Ironically, making the con-
nection to the database can be one of the most
time-consuming operations performed. But
this servlet does it for every client request.

One potential way around this problem is
to have the Connection class static, starting off
live as a null. When the first client request
comes in, it can create the database connec-
tion, and each subsequent connection can
then reuse that connection. However, you still

B O O K E X C E R P T

Servlets
& JDBC

How to use JDBC effectively
in a servlet environment

WRITTEN BY ALAN WILLIAMSON

Second in a series of articles adapted from
Java Servlets: By Example by Alan R.
Williamson, reproduced here by permission
of Manning Publications.

103APRIL 2000

Java COM

KL Group
www.klgroup.com

Java COM

104 APRIL 2000

have to safeguard against multiple hits; imple-
menting the SingleThreadModel interface
from the servlet API can easily resolve this
issue.

Although technically correct, it is still very
restrictive. First, only one client thread can run
through the service(...) at any one time. Sec-
ond, what if we develop another servlet to
operate from the same database? Do we have
to create a new connection to the database?

For these reasons, the implementation in the
next section is a much better, cleaner solution.

Method #2: Connection Pool
This section will demonstrate the design

and implementation of a class that will be used
to manage all the connections for the data-
base.

OVERVIEW
We want to be able to open up a pool of

connections. Every time a class needs to run a
query, it will ask for a connection from the
pool. If one is available, the connection is tem-
porarily lent to the class on the condition that
it is returned after it’s used. If one isn’t avail-
able, then the class can wait for one to become
available.

One of the things we don’t want to have to
do is to carry around a reference to the con-
nection pool. This would make it awkward, as
we would have to make sure all classes had a
reference to it. Fortunately, with Java we don’t
have to worry about this.

We will design a class, dbBroker, to handle
all the connections. It will also be responsible
for the distribution of the actual connections.
In order not to have to carry an instance to this
class around with us, we will make all the pub-
lic methods static, with the class itself holding
the reference to an instance of itself.

Listing 3 shows how to set up this class. Before
a method retrieves a connection from the pool, it
first must make a call to dbBroker.getInstance().
This is a call to verify that an instance has been
created and is ready to serve.

To make sure this class isn’t created outside
of this, we will make the constructor private.
The next section will look at what happens in
this constructor.

MANAGING NEW CONNECTIONS
The connection pool will manage the con-

nections to the database, including all the
checking and administration of lending out the
connections to using classes. To make things a
little easier, we will define a wrapper class for
each Connection and these classes will be used
to store all the necessary information associat-
ed with the “hire” of the connection.

The class, dbConnection (shown in Listing
4), shows all the methods and data for each
Connection. In addition to the Connection
object, a flag to indicate its current status will be
kept. This flag will be set when a class is using
the Connection, using the setActive() method.

In multiuser systems, it can often be diffi-
cult to estimate the number of concurrent
connections that are actually needed. In order
for this decision to be an easier one to make,
we will keep a little statistical information on
each Connection, including the number of
times the Connection has been used, the aver-
age time for each use and the maximum time a
connection has been kept out for. The dbCon-
nection handles all this information through
the use of the setActive() and setInActive()
methods.

When a class makes a call to dbBro-
ker.getInstance(), the constructor shown in
Listing 5 is run. This constructor will create the
number of necessary connections and make
them available for use.

One of the criteria of the connection pool
was not to have any intelligence about the
opening of the database distributed all over
the system. Therefore, this class will open up a
special file that will describe the complete
connection parameters. We can therefore con-
trol all the parameters through a simple text
file, and access these parameters with the
java.util.Properties class.

The database driver, database name, user-
name and password will be stored in the
dbBroker class. This will allow us to reopen any
connections if necessary without the need to
reload the file. Another parameter that is read
in is the number of connections the pool man-
ager will manage.

Each connection will be stored in a list
using the Vector class. Knowing the number of
connections to be created makes filling up this
list a trivial matter. For each connection, a call
to the method in Listing 6 is made and the
openConnection() method attempts to create
a new Connection instance. If it’s successful,
then a new instance of dbConnection is creat-
ed and inserted into the list.

You can see that the method for creating
the Connection instance is no different from
the method we used in the servlet in the first
section.

CONTROLLING CONNECTIONS
We will allow classes access to the connec-

tion pool through two methods: pop() and
push(...). The pop() method will look through
the list of connections for a connection that is
not in use. If one is found, then it is flagged as
active and the Connection is returned.

If one is not available, then this suggests
that all the connections are being used. If this
is the case, then the method call will be sus-
pended until one does become available. We
can do this with a call to wait(). When this
returns, we will reattempt to get a free connec-
tion. The method shown in Listing 7 illustrates
this process.

The method called getFreeConnection(),
which can be seen in the complete source
code, simply runs through the Vector of
dbConnections looking for an inactive con-
nection.

Once a class has finished using the connec-
tion, it is returned with a call to the push(...)
method shown in Listing 8. The method looks
for the corresponding wrapper class that holds
this connection. Once the wrapper class is
found, the Connection is cleaned up with a call
to commit() and clearWarnings(). This guaran-
tees that no errors or warnings roll over to the
next use.

If something goes wrong with this cleanup
procedure, an Exception will be thrown. In this
instance, the Connection is closed and a reat-
tempt to open it is made. After the Connection
has been placed back into the list as inactive, a
call to notifyAll() notifies any waiting classes
that are waiting on a free class.

VERIFYING CONNECTIONS
It would be useful to print out all the statis-

tical information that is being held every so
often. To do this, we can set the dbBroker class
as a threaded class and have it print out the
statistics of each dbConnection class once
every period.

The method shown in Listing 9 sleeps for
30 minutes before printing out a status report
detailing the average use time and maximum
time, and the number of times the connection
has been accessed.

USING THE POOL MANAGER
Now that we’ve created the pool manager,

we can use it. We will use the same example we
used before and replace the service(...) method
with a much improved version (see Listing 10).

The complete database creation section
has been replaced with a simple call to dbBro-
ker.getInstance() and then dbBroker.pop().
The dbBroker class will do all the necessary
loading and connecting to the database, and
return a clean Connection instance.

After we have finished using it, we return it
back to the pool manager with a call to dbBro-
ker.push(...). As you can see, there is no need to
hold a separate instance to dbBroker, as all the
methods are accessed through static calls.

Summary
This article presented the user with an

alternative to the highly inefficient method of
database handling. A servlet is not like a nor-
mal application where you have a degree of
control over the usage patterns. A servlet is
called into action when a client makes a
request; therefore, the traditional way of han-
dling database connections has to be
rethought.

Although it is already highly efficient, the
dbBroker could be extended to include the
ability to handle multiple pools. This would
allow connections to different databases to be
handled and manipulated at once. This is an
essential feature for applications that require a
distributed database layer.

B O O K E X C E R P T

alan@sys-con.com

105APRIL 2000

Java COM

JDJ Store
www.jdjstore.com

Java COM

106 APRIL 2000

XML Dev
www.xmldevc

107APRIL 2000

Java COM

Con 2000
con2000.com

Java COM

108 APRIL 2000

Java Technology Comes of Age
WRITTEN BY ED LYCKLAMA

I M H O

J
ava has emerged from its own hype relatively unscathed and is now
showing itself capable of matching the lofty predictions made for it.
The two main indicators of this rite of passage are standardization and

evolving best practices – developments that are bringing corporations
much nearer to achieving the productivity gains that Java can deliver.

Java’s advantages are well known. In the spotlight from the outset
has been the promise of WORA (“write once, run anywhere”). Even in
an imperfect state WORA offers corporations bottom-line benefits
that accommodate past, present and future: cost-effective integration
with legacy investments, relatively painless synchronization of het-
erogeneous business units and longer-term platform viability that
protects against costly future changes in technology infrastructure.

Developing in Java also brings productivity benefits. Because it’s
object-oriented, Java offers more opportunity for reuse of blocks of
code, allowing teams to amortize development costs over more pro-
jects and longer time periods. Java is also easier to learn and work in,
which allows for faster development and condensed training.

Now that its advantages are becoming recognized, Java is finally
approaching its heyday in the enterprise. How do we make sure it
behaves itself, though, having got to this point?

While emerging technologies always tend to be accompanied by
rosy expectations of cost savings and streamlining of processes,
turning such expectations into reality is another matter. While other
languages and platforms already have a history long enough to ben-
efit from the emergence of best practices, Java development has
remained pretty much a game without rules. But this is changing.

Standardization Is On Its Way
The trend toward standardization is evidence of this shift. While

there’s no shortage of companies peddling Java products, the shake-
down has begun, driven by the desire of corporate purchasers to
secure reputable, stable vendors in an insecure and immature market.

Pressure is growing to standardize on best-of-breed tools and compo-
nents from preferred vendors. Good candidates for standardization include
application servers and IDEs, as well as JavaBeans such as KL Group’s JClass
JavaBeans or Rogue Wave’s StudioJ. These reusable GUI components allow
developers to build graphical front ends quickly and easily. Acting as ready-
made building blocks, JavaBeans provide functionality for requirements
that tend to recur from project to project (e.g., graphs, charts and tables). By
standardizing on one family of components, teams can ensure high-quali-
ty interfaces and protect themselves from inconsistencies in their code
base. What’s more, by purchasing ready-made components rather than
dedicating in-house resources to building them from scratch, companies
can save valuable development time and focus on core competencies.

Equally important is a commitment to best-of-breed methodolo-
gies such as rigorous and timely code tuning. Again, other languages
have a head start on Java. In Java development, early efforts concen-
trated more on the seemingly glorious capabilities than on the limi-
tations. As Java becomes a serious contender for corporate applica-
tion development, however, cost-conscious managers are increas-
ingly focused on identifying and overcoming these limitations.

A key concern for Java has been performance. Software companies
have risen to the challenge with solutions designed to enhance Java per-
formance that include native compilers, VM improvements, and perfor-
mance tuning and code analysis tools. Products such as JProbe Suite from
KL Group and OptimizeIT! from Intuitive Systems are good examples of
this. These tools offer some or all of the following functionality: perfor-
mance profiling, memory debugging, thread analysis and code coverage.

Best Practices Are Evolving
How and when should these tools be used? Best practices associ-

ated with other programming languages may be useful, even when
least expected.

Take memory debugging, for instance. With the zeal typical of
early adoption, developers once heralded Java as the language that
would rid applications of memory leaks once and for all, thanks to the
garbage collector. Yet today developers are beginning to recognize
that garbage collection isn’t a panacea after all. Java has its own
unique brand of memory leaks that – though quite different in nature
from C++ leaks – can have an even more devastating effect on perfor-
mance. Consequently, memory debugging is now recognized as a
critical component of the Java development cycle.

Performance tuning is another best practice that can be applied
equally well to Java. Donald Knuth once quipped that “premature
optimization is the root of all evil.” This 25-year-old quote is often
taken out of context to imply that all performance tuning should be
performed in the QA and acceptance phases; conveniently omitted
is the first half of the quote: “We should forget about small efficien-
cies, say about 97% of the time.” Knuth’s maxim was written at a
point when computing time was several orders of magnitude more
expensive than it is now. Thus developers learned to use “coding
tricks” to squeeze performance out of programs, often at the expense
of maintainability. More often than not, the highly obfuscated code
that resulted wasn’t a performance bottleneck to begin with.

In the Internet age each new revision must be rolled out within a
shorter time frame than ever before. These applications, with a large
user base, have performance and scalability requirements that were
unheard of 25 years ago. Today’s applications are larger too, and more
complicated, relying on a great deal of componentized code written by
many different authors. Postponing performance tuning until the end of
a project can result in problems that are difficult to diagnose and often
require massive rework and redesign to address, which threatens the
project schedule. No development team can afford to take those kinds
of risks in today’s environment, where time-to-market is paramount.

When should performance tuning be done? Move tuning efforts
too early and developers may run right back into the evils of prema-
ture optimization, even in the Java space. Experts recommend a risk
management strategy that sees tuning begin immediately after proof
of concept is safely in the bag. This strategy avoids profligate opti-
mization efforts on mere prototypes while simultaneously ensuring
that performance problems aren’t given the opportunity to accumu-
late prior to deployment. Consequently, thread analysis, memory
debugging and performance profiling in Java are increasingly taking
place at the functional unit level, typically earlier than in C++ devel-
opment. This new best practice makes it easier for companies to
deploy reliable Java applications on time and within budget.

Talk of Java on the server and in the enterprise is now increasing-
ly underpinned by pragmatic technologies and methodological prin-
ciples that are turning the promises into reality. Standardization and
best practices are a clear indicator of Java’s coming of age and the
real bottom-line results will soon follow.

AUTHOR BIO
Ed Lycklama is the chief technology officer and cofounder of KL Group, with primary responsibility for
overseeing the company’s technology direction and intellectual capital.

el@klgroup.com

109APRIL 2000

Java COM

SilverStream
www.silverstream.com

Java COM

110 APRIL 2000

KL Group
www.klgroup.com

